CAREER: CAS-Climate: Understanding Thermal Transport Processes in Atmospheric Boundary Layer with Utility-Scale Solar Photovoltaic Plants
职业:CAS-气候:了解公用事业规模太阳能光伏电站的大气边界层热传输过程
基本信息
- 批准号:2144299
- 负责人:
- 金额:$ 50.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To achieve complete renewable-based electrification from the current level of less than 20% globally presents great challenges for the energy science community. This requires hundreds of trillions of kilowatt-hours of renewable energy, mainly generated through wind and solar power. One neglected but crucial question is whether extracting such huge amount of energy from the atmosphere's surface layer would alter the atmosphere's physics, leading to new climate change challenges. This CAREER project will focus on addressing whether large-scale solar photovoltaic plants alter the local climate. The research will parameterize the atmospheric response carried out by transport processes to facilitate the inclusion of solar plants in climate models. This project will pave the way for undergraduate and graduate students in middle Tennessee to become engaged in climate change education and discussion. The results of this research will enable a new "Atmospheric Transport" course at Tennessee Technological University, a textbook titled Atmospheric Transport to increase scientific literacy, and an educational mobile app ATMOSPort.This project seeks to study the interactions between the near-ground atmosphere and an artificial canopy of millions of solar photovoltaic panels. A two-stage field campaign and computational fluid dynamics simulations are proposed to provide an understanding of thermal transport dynamics within the atmospheric boundary layer above thousands of acres of dark, hot, tall, and rough Photovoltaic panels of utility-scale solar plants. The knowledge gained will clarify whether such giant canopies alter the local climate and will lead to the creation of equations that accurately describe the affected atmospheric characteristics. The proposed research quantifies the significance of these impacts for various background surface conditions and parameterizes the thermal and mechanical effects of the plant to allow meteorologists and environmental engineers to incorporate them into their models efficiently. This achievement would increase the accuracy of atmospheric simulations within regions where utility-scale photovoltaic plants exist.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从目前全球不到 20% 的水平实现完全基于可再生能源的电气化,对能源科学界提出了巨大的挑战。这需要数百万亿千瓦时的可再生能源,主要通过风能和太阳能发电。一个被忽视但至关重要的问题是,从大气表层提取如此大量的能量是否会改变大气的物理性质,从而导致新的气候变化挑战。该职业项目将重点解决大型太阳能光伏电站是否会改变当地气候的问题。该研究将对运输过程进行的大气响应进行参数化,以促进将太阳能发电厂纳入气候模型。该项目将为田纳西州中部的本科生和研究生参与气候变化教育和讨论铺平道路。这项研究的结果将为田纳西理工大学开设新的“大气传输”课程、一本名为“大气传输”以提高科学素养的教科书以及一款教育移动应用程序 ATMOSPort 提供支持。该项目旨在研究近地大气与大气层之间的相互作用。由数百万块太阳能光伏板组成的人造天篷。提出了两阶段现场活动和计算流体动力学模拟,以了解数千英亩的公用事业规模太阳能发电厂的黑暗、炎热、高大和粗糙的光伏电池板上方大气边界层内的热传输动力学。获得的知识将澄清这些巨大的树冠是否会改变当地的气候,并将导致创建准确描述受影响的大气特征的方程。拟议的研究量化了这些影响对各种背景表面条件的重要性,并将工厂的热效应和机械效应参数化,以便气象学家和环境工程师能够有效地将它们纳入他们的模型中。这一成就将提高公用事业规模光伏电站所在地区大气模拟的准确性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmad Vaselbehagh其他文献
Ahmad Vaselbehagh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
- 批准号:62305229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应用CRISPR/Cas13a基因编辑系统针对BRAFV600E阳性黑色素瘤脑转移瘤精准诊疗技术的研究
- 批准号:82303971
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AcrIIA16-19蛋白抑制CRISPR-Cas9系统的机制研究
- 批准号:32300036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于CRISPR/Cas9筛选肝癌进展中关键可变剪切因子及促癌机制研究
- 批准号:82303469
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
正二十面体框架核酸高效递送CRISPR-Cas13a靶向阻断高毒力金葡菌α溶血素表达
- 批准号:82302594
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: CAS-Climate: Addressing Climate Change Impacts on Urban Water Affordability
职业:CAS-气候:应对气候变化对城市水承受能力的影响
- 批准号:
2337668 - 财政年份:2024
- 资助金额:
$ 50.05万 - 项目类别:
Continuing Grant
CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
- 批准号:
2339386 - 财政年份:2024
- 资助金额:
$ 50.05万 - 项目类别:
Continuing Grant
CAREER: CAS- Climate -- Air-quality-related environmental justice impacts of decarbonization scenarios
职业:CAS-气候——脱碳情景与空气质量相关的环境正义影响
- 批准号:
2339462 - 财政年份:2024
- 资助金额:
$ 50.05万 - 项目类别:
Continuing Grant
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
- 批准号:
2338158 - 财政年份:2024
- 资助金额:
$ 50.05万 - 项目类别:
Continuing Grant
CAREER: CAS-Climate: Multiscale Data and Model Synthesis Informed Approach for Assessing Climate Resilience of Crop Production Systems
职业:CAS-气候:用于评估作物生产系统气候适应能力的多尺度数据和模型综合知情方法
- 批准号:
2339529 - 财政年份:2024
- 资助金额:
$ 50.05万 - 项目类别:
Continuing Grant