CAREER: Developing Transcranial Magnetic Stimulation as a Precision Brain Circuit Tool for Stroke Rehabilitation

职业:开发经颅磁刺激作为中风康复的精密脑回路工具

基本信息

  • 批准号:
    2143852
  • 负责人:
  • 金额:
    $ 55.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method with many applications in research and therapy. TMS uses magnetic fields to deliver pulses that create temporary electric fields in the brain. The magnetic pulses are delivered over the scalp and the created electric fields can stimulate nerve cells in the brain regions where the pulse is delivered. Stroke is a medical condition where a lack of blood supply of a specific brain region results in nerve cell death that can affect the brain connections that control movement. Stroke is one of the main causes of disability that impacts the quality of life of millions of people. Many studies have investigated the use of TMS to assess the human motor system and to develop therapies for stroke. TMS is ideal for this because it allows for the measurement of the connection and transfer of brain signals between the motor cortex in the brain and the muscles. Also, TMS is a promising therapeutic tool to improve recovery and re-learning of motor control after stroke. However, despite the possible advantages of TMS-based brain stimulation therapies, the treatment outcomes vary considerably and not all patients benefit. In this project, the investigators will develop improved methods to measure and analyze brain signals to better adjust the TMS procedure to each individual patient’s brain motor system for better and more precise assessments and therapies for stroke survivors. The investigator will develop new educational materials, 3-D printed models, and hold workshops to teach these methods to a wide range of individuals including local high school students.The PI proposes to develop individualized TMS applications for assessing the motor system in adult stroke patients and future rehabilitation efforts. This will be based on (i) individual anatomical characterization using structural MRI and (ii) individual functional characterization employing electroencephalography (EEG), combined with (iii) advanced computational modeling. Ongoing oscillatory brain states, highlighting local brain excitability, will be tracked in real-time by EEG and be used to apply TMS in a closed-loop fashion. The PI will leverage these technological developments to advance TMS technology to assess motor circuitry and advance the field’s understanding of brain pathologies in stroke, thus enabling future clinical trials for stroke rehabilitation. This project will result in next-generation technology that will allow principled TMS studies of brain circuits in stroke with high spatial and temporal resolution. This will be based on advances in image and signal processing initially established for healthy individuals and translation towards individuals with stroke. Through initial experimental testing, it will be ensured that technological advances will result in improved practical applications. Outcomes of this research will result in new approaches for closed-loop TMS in individuals with stroke. Success in these efforts will allow the design and execution of more precise brain stimulation protocols for the assessment of motor circuits and TMS stroke rehabilitation protocols.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经颅磁刺激(TMS)是一种无创脑刺激方法,具有许多在研究和治疗中的应用。 TMS使用磁场来传递在大脑中产生临时电场的脉冲。磁性脉冲在头皮上传递,并且产生的电场可以刺激脉冲传递的大脑区域中的神经细胞。中风是一种医疗状况,特定大脑区域缺乏血液供应会导致神经细胞死亡,这会影响控制运动的大脑连接。中风是影响数百万人质量的残疾主要原因之一。许多研究研究了使用TMS评估人体运动系统并开发中风疗法的使用。 TMS是理想的选择,因为它允许测量大脑和肌肉运动皮质之间的脑信号的连接和转移。同样,TMS是一种有希望的治疗工具,可改善中风后运动控制的恢复和重新学习。但是,尽管基于TMS的大脑刺激疗法可能有优势,但治疗结果差异很大,并非所有患者都受益。在该项目中,研究人员将开发改进的方法来测量和分析大脑信号,以更好地调整TMS程序,以使每个患者的脑运动系统进行更好,更精确的评估和中风存活的疗法。研究人员将开发新的教育材料,3D印刷模型,并举办研讨会,向包括当地高中生在内的广泛个人教授这些方法。PI提案开发了个性化的TMS申请,以评估成人中风患者的运动系统以及未来的康复工作。这将基于(i)使用结构MRI和(ii)采用脑电图(EEG)(EEG)的个体功能表征的(iii)高级计算建模的个体功能表征。 EEG将实时跟踪持续的振荡性脑状态,突出局部大脑兴奋,并以闭环方式使用TMS。 PI将利用这些技术发展来推进TMS技术,以评估运动电路并促进该领域对中风中脑病理的理解,从而实现未来的临床试验进行中风康复。该项目将导致下一代技术,该技术将允许使用高空间和临时分辨率的脑电路进行主要的TMS研究。这将基于最初针对健康个体建立的图像和信号处理的进步,并向中风的个体转化。通过最初的实验测试,将确保技术进步将改善实际应用。这项研究的结果将为中风患者的闭环TMS提供新的方法。这些努力的成功将允许设计和执行更精确的大脑刺激协议,以评估运动电路和TMS中风康复方案。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的评估标准通过评估来获得的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The phase of sensorimotor mu and beta oscillations has the opposite effect on corticospinal excitability
感觉运动 mu 和 beta 振荡的相位对皮质脊髓兴奋性具有相反的影响
  • DOI:
    10.1016/j.brs.2022.08.005
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Wischnewski, Miles;Haigh, Zachary J.;Shirinpour, Sina;Alekseichuk, Ivan;Opitz, Alexander
  • 通讯作者:
    Opitz, Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Opitz其他文献

Intracranial electric field measurements during TES. Identifying determinant factors of the electric field distribution
  • DOI:
    10.1016/j.brs.2017.04.081
  • 发表时间:
    2017-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Opitz;Erin Yeagle;Axel Thielscher;Charles Schroeder;Ashesh Mehta;Michael P. Milham
  • 通讯作者:
    Michael P. Milham
Multi-scale Modeling Toolbox for Single Neuron and Subcellular Activity under (repetitive) Transcranial Magnetic Stimulation
(重复)经颅磁刺激下单神经元和亚细胞活动的多尺度建模工具箱
  • DOI:
    10.1101/2020.09.23.310219
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Shirinpour;Nicholas Hananeia;James Rosado;C. Galanis;A. Vlachos;Peter Jedlicka;Gillian Queisser;Alexander Opitz
  • 通讯作者:
    Alexander Opitz
Abstract #4: Pipeline Verification for the Identification of Noninvasive Neuromodulation Targets for Pediatric Stroke Rehabilitation
  • DOI:
    10.1016/j.brs.2018.12.011
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kathleen E. Mantell;Samuel T. Nemanich;Ellen Sutter;Bernadette T. Gillick;Alexander Opitz
  • 通讯作者:
    Alexander Opitz
An individualized non-invasive brain stimulation targeting pipeline using functional imaging data and SimNIBS
  • DOI:
    10.1016/j.brs.2023.01.722
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Timothy Hendrickson;Mo Chen;Bryon Mueller;Sunday Francis;Kerry Houlihan;Alexander Opitz;Deanna Greene;Suma Jacob;Christine Conelea
  • 通讯作者:
    Christine Conelea
Toward validated multi-scale models for dose control in non-invasive brain stimulation
  • DOI:
    10.1016/j.brs.2023.01.245
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Opitz
  • 通讯作者:
    Alexander Opitz

Alexander Opitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
  • 批准号:
    32360143
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
  • 批准号:
    32371366
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
  • 批准号:
    72363013
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
  • 批准号:
    72334006
  • 批准年份:
    2023
  • 资助金额:
    167 万元
  • 项目类别:
    重点项目
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
  • 批准号:
    82372667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Developing Patient-Specific Models of Whole Brain Networks in Depression to Examine the Network Effects of Focal Neurostimulation
开发抑郁症患者的全脑网络模型以检查局灶神经刺激的网络效应
  • 批准号:
    489876
  • 财政年份:
    2023
  • 资助金额:
    $ 55.19万
  • 项目类别:
    Operating Grants
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10600239
  • 财政年份:
    2020
  • 资助金额:
    $ 55.19万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10219683
  • 财政年份:
    2020
  • 资助金额:
    $ 55.19万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10228768
  • 财政年份:
    2020
  • 资助金额:
    $ 55.19万
  • 项目类别:
Developing a Novel rTMS Intervention for Transdiagnostic Psychosocial Rehabilitation: ADose-finding Study
开发一种用于跨诊断心理社会康复的新型 rTMS 干预措施:AD 剂量探索研究
  • 批准号:
    10844345
  • 财政年份:
    2019
  • 资助金额:
    $ 55.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了