CAREER: New Algorithms and Models for Turbulence in Incompressible Fluids
职业:不可压缩流体湍流的新算法和模型
基本信息
- 批准号:2143331
- 负责人:
- 金额:$ 46.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Turbulence is ubiquitous in nature, and decisions that affect our life are made daily based on predictions of turbulent flows. Obtaining accurate predictions of turbulent flows is a central challenge in global change estimation, weather forecasting, freshwater supply, improving the energy efficiency of engines, controlling dispersal of contaminants, and designing biomedical devices. A turbulent flow is a highly irregular system, characterized by chaotic property changes involving a wide range of scales in nonlinear interaction with each other. These features yield a high computational complexity, which makes direct numerical simulations of turbulent flows that aim at resolving all features down to the smallest scales infeasible even with modern supercomputers. Instead, turbulence models are used for practical turbulence simulations to bypass the chaotic details and reduce the computational complexity. This project aims to develop a new family of ensemble averaged turbulence models and novel numerical methods for their solution, extending current applicability and computational limitations of effective turbulence simulations, which may have a great impact on numerous applications in aeronautics, hydraulics, chemical engineering, oceanography, meteorology, astrophysics, and geophysics, considering turbulence’s prominent influence in almost all geophysical and industrial flows. A comprehensive educational program will be developed to provide students with systematic training in computational fluid dynamics and bring them up to date on current research topics in this field. Turbulence modeling remains one of the most important scientific challenges. The fundamental approach for turbulence modeling is to seek to approximate suitable (ensemble, time, or spatial) averages of fluid velocity instead of pointwise velocity itself. Ensemble averaging is the most intuitive approach from the statistical theory for turbulence, but it is currently not in use for practical turbulence simulations of industrial flows due to the extremely high computational cost associated with ensemble simulations. This deadlock is recently broken with newly developed ensemble algorithms that give access to the full ensemble at every time step and thus open new and direct possibilities for developing turbulence models for the ensemble averaged Navier-Stokes equations. In this project the investigator will develop a new family of ensemble-based variational multiscale method (VMS) turbulence models and novel numerical methods under the new framework of ensemble averaging for practical turbulent flow simulations. New unconditionally stable ensemble algorithms will be developed for fast solution of the new ensemble-based VMS turbulence models and to effectively overcome the backflow instability for turbulent flows with open boundary conditions. This project will provide new avenues to turbulence modeling and simulations and build a new rigorous numerical analysis addressing how to make effective approximations in the face of Newtonian chaos.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流在自然界中无处不在,影响我们生活的决策每天都是基于湍流的预测而做出的,获得湍流的准确预测是全球变化估计、天气预报、淡水供应、提高发动机的能源效率等方面的一个核心挑战。控制污染物的扩散和设计生物医学设备湍流是一个高度不规则的系统,其特征是涉及各种尺度的非线性相互作用的混沌特性变化。这些特征会产生很高的计算复杂度,这使得即使使用现代超级计算机,也无法对湍流进行直接数值模拟,以将所有特征解析到最小尺度,而是使用湍流模型进行实际湍流模拟,以绕过混沌细节并减少复杂性。该项目旨在开发一系列新的系综平均湍流模型及其解决方案的新颖数值方法,扩展有效湍流模拟的当前适用性和计算限制,这可能具有考虑到湍流在几乎所有地球物理和工业流动中的显着影响,将开发一个全面的教育计划,为学生提供计算流体的系统培训。湍流建模仍然是最重要的科学挑战之一,其基本方法是寻求近似合适的(系综、时间、流体速度的平均(或空间)平均值而不是点速度本身是湍流统计理论中最直观的方法,但由于与相关的计算成本极高,目前尚未用于工业流的实际湍流模拟。最近,新开发的系综算法打破了这一僵局,该算法可以在每个时间步访问完整的系综,从而为开发系综平均纳维-斯托克斯方程的湍流模型提供了新的直接可能性。该项目的研究人员将在新的集合平均框架下开发一系列基于集合的变分多尺度方法(VMS)湍流模型和新颖的数值方法,用于实际的湍流模拟。将开发新的无条件稳定的集合算法来快速求解。该项目将为湍流建模和模拟提供新途径,并建立新的严格数值分析解决方案。如何在面对牛顿混沌时做出有效的近似。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial compressibility SAV ensemble algorithms for the incompressible Navier-Stokes equations
- DOI:10.1007/s11075-022-01382-z
- 发表时间:2022-08
- 期刊:
- 影响因子:2.1
- 作者:N. Jiang;Huanhuan Yang
- 通讯作者:N. Jiang;Huanhuan Yang
Unconditionally stable, second order, decoupled ensemble schemes for computing evolutionary Boussinesq equations
- DOI:10.1016/j.apnum.2023.06.011
- 发表时间:2023-10
- 期刊:
- 影响因子:2.8
- 作者:N. Jiang;Huanhuan Yang
- 通讯作者:N. Jiang;Huanhuan Yang
Numerical investigation of two second-order, stabilized SAV ensemble methods for the Navier–Stokes equations
- DOI:10.1007/s10444-022-09977-9
- 发表时间:2022-10
- 期刊:
- 影响因子:1.7
- 作者:N. Jiang;Huanhuan Yang
- 通讯作者:N. Jiang;Huanhuan Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nan Jiang其他文献
Removal of dimethyl sulfide by post-plasma catalysis over CeO2-MnOx catalysts and reaction mechanism analysis
CeO2-MnOx催化剂后等离子体催化去除二甲硫醚及反应机理分析
- DOI:
10.1016/j.chemosphere.2021.129910 - 发表时间:
2021 - 期刊:
- 影响因子:8.8
- 作者:
Lu Hu;Nan Jiang;Bangfa Peng;Zhengyan Liu;Jie Li;Yan Wu - 通讯作者:
Yan Wu
Characteristics and Genetic Mechanism of Pore Throat Structure of Shale Oil Reservoir in Saline Lake—A Case Study of Shale Oil of the Lucaogou Formation in Jimsar Sag, Junggar Basin
盐湖页岩油储层孔喉结构特征及成因机制——以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例
- DOI:
10.3390/en14248450 - 发表时间:
2021-12 - 期刊:
- 影响因子:3.2
- 作者:
Xiaojun Zha;Fuqiang Lai;Xuanbo Gao;Gao Yang;Nan Jiang;Long Luo;Yingyan Li;Jin Wang;Shouchang Peng;Xun Luo;Xianfeng Tan - 通讯作者:
Xianfeng Tan
Lefty inhibits glioma growth by suppressing Nodal-activated Smad and ERK1/2 pathways
Lefty 通过抑制 Nodal 激活的 Smad 和 ERK1/2 通路来抑制神经胶质瘤生长
- DOI:
10.1016/j.jns.2014.09.034 - 发表时间:
2014 - 期刊:
- 影响因子:4.4
- 作者:
Guan Sun;Lei Shi;Min Li;Nan Jiang;Lin;Jun Guo - 通讯作者:
Jun Guo
Litchi-peel-like hierarchical hollow copper-ceria microspheres: aerosol-assisted synthesis and high activity and stability for catalytic CO oxidation
荔枝皮状分级空心铜二氧化钛微球:气溶胶辅助合成及其催化CO氧化的高活性和稳定性
- DOI:
10.1039/c8nr04642e - 发表时间:
2018 - 期刊:
- 影响因子:6.7
- 作者:
Wenge Li;Yanjie Hu;Hao Jiang;Nan Jiang;Wei Bi;Chunzhong Li - 通讯作者:
Chunzhong Li
A dynamic system for Gompertz model
Gompertz 模型的动态系统
- DOI:
10.1080/00949655.2017.1405418 - 发表时间:
2018 - 期刊:
- 影响因子:1.2
- 作者:
Y. Lio;Tzong;Nan Jiang;N. Balakrishnan - 通讯作者:
N. Balakrishnan
Nan Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nan Jiang', 18)}}的其他基金
CAREER: Theoretical Foundations of Offline Reinforcement Learning
职业:离线强化学习的理论基础
- 批准号:
2141781 - 财政年份:2022
- 资助金额:
$ 46.28万 - 项目类别:
Continuing Grant
Probing Local Structural and Chemical Properties of Atomically Thin Two-Dimensional Materials by Optical Scanning Tunneling Microscopy
通过光学扫描隧道显微镜探测原子薄二维材料的局部结构和化学性质
- 批准号:
2211474 - 财政年份:2022
- 资助金额:
$ 46.28万 - 项目类别:
Continuing Grant
Efficient Ensemble Methods for Predictive Fluid Flow Simulations Subject to Uncertainty
用于预测不确定性流体流动模拟的有效集成方法
- 批准号:
2120413 - 财政年份:2021
- 资助金额:
$ 46.28万 - 项目类别:
Standard Grant
CAREER: Probing Chemistry of Surface-Supported Nanostructures at the Angstrom-Scale
职业:埃级表面支撑纳米结构的化学探索
- 批准号:
1944796 - 财政年份:2020
- 资助金额:
$ 46.28万 - 项目类别:
Continuing Grant
Collaborative Research: Integrated Experimental and Computational Studies for Understanding the Interplay of Photoreactive Materials and Persistent Contaminants
合作研究:用于了解光反应材料和持久性污染物相互作用的综合实验和计算研究
- 批准号:
1807465 - 财政年份:2018
- 资助金额:
$ 46.28万 - 项目类别:
Standard Grant
Efficient Ensemble Methods for Predictive Fluid Flow Simulations Subject to Uncertainty
用于预测不确定性流体流动模拟的有效集成方法
- 批准号:
1720001 - 财政年份:2017
- 资助金额:
$ 46.28万 - 项目类别:
Standard Grant
Time-Resolved EELS of Photonic Crystals and Glasses
光子晶体和玻璃的时间分辨 EELS
- 批准号:
0603993 - 财政年份:2006
- 资助金额:
$ 46.28万 - 项目类别:
Continuing Grant
相似国自然基金
光纤干涉型振动传感系统模式识别新智能算法的研究
- 批准号:62305113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模结构型优化新分裂算法及其在深度学习中的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植被含水量和气象条件约束的卫星遥感火灾一氧化碳排放系数反演新算法
- 批准号:42205135
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Bagging算法与Calumenin调控的蒙药新II号抑制心肌细胞凋亡改善扩张型心肌病的代谢组学研究
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
地方债制度改革与企业劳动力投入:基于新《预算法》的准自然实验
- 批准号:72272166
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
- 批准号:
10664706 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别:
The Function of Sleep in Critical Period Plasticity
睡眠在可塑性关键期的作用
- 批准号:
10590177 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别:
Mixed-Methods Evaluation of Mobile Health Adaptive Learning Training for Pediatric Healthcare Workers in Tanzania
坦桑尼亚儿科医护人员移动健康适应性学习培训的混合方法评估
- 批准号:
10863717 - 财政年份:2023
- 资助金额:
$ 46.28万 - 项目类别: