CAREER: Development of a Novel Approach for the Identification of Toxic Byproducts and their Precursors in Oxidative Drinking Water Treatment
职业:开发一种识别氧化饮用水处理中有毒副产物及其前体的新方法
基本信息
- 批准号:2143152
- 负责人:
- 金额:$ 55.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Chemical oxidants such as chlorine, chloramine, ozone, and hydrogen peroxide are widely used in water treatment as disinfectants to deactivate pathogens and as reactants to abate organic contaminants in drinking water sources. These chemical oxidants can also react with organic contaminants and dissolved organic matter (DOM) to generate byproducts which can adversely impact human health due to their potential toxicity. Currently, hundreds of byproducts have been detected in treated drinking water. However, only a limited number of these byproducts have been evaluated for toxicity as the current protocols used to assess their toxicity rely on a slow and inefficient chemical-by-chemical evaluation approach. The overarching goal of this CAREER project is to develop a novel approach to identify toxic byproducts and their precursors in drinking water treated with chemical oxidants. This novel approach, reactivity-directed analysis (RDA), builds upon techniques and protocols pioneered in drug development and chemical risk assessment to identify all byproducts with simar mechanisms of toxicity in a sample of drinking water treated with chemical oxidants. The successful completion of this project will benefit society through the generation of new fundamental knowledge to understand, control, and mitigate the formation of toxic byproducts and their precursors in drinking water treated with chemical oxidants. Further benefits to society will be achieved through student education and training including the mentoring of a graduate student at Johns Hopkins University. Chemical oxidants used in water treatment react with organic contaminants and dissolved organic matter (DOM) in drinking water sources to generate a large variety of byproducts. However, a comprehensive assessment of the toxicity of drinking water byproducts has remained elusive. This CAREER project will address this critical knowledge gap. To advance this goal, the Principal Investigator (PI) proposes to develop and apply a novel approach to detect toxic byproducts, called reactivity-directed analysis (RDA). This innovative approach leverages assays and protocols pioneered in drug development and chemical risk assessment to identify toxic organic electrophiles (the largest class of known toxicants) in treated drinking water and elucidate their precursors. The specific objectives of the proposed research are to: 1) Develop a novel microbead-based RDA assay for the detection of organic electrophiles in complex aqueous matrices, 2) Investigate the formation and reaction mechanisms of organic electrophiles produced from the reaction of phenolic DOM model compounds with chemical oxidants, and 3) Investigate the formation of organic electrophiles produced from the reactions of DOM isolates, treated wastewater, and surface water with chemical oxidants. The successful completion of this project has the potential for transformative impact through the generation of fundamental knowledge to advance the development and implementation of a new framework for identifying toxic byproducts and their precursors that could be used to minimize and mitigate their formations in drinking water treatment systems. To implement the educational and training goals of this CAREER project, the PI will leverage his ongoing collaboration with The Food Project (TFP) to develop and implement an afterschool program (EnviroSense) that will expose middle and high-school students to the design and applications of water quality sensors. In addition, the PI plans to develop two new courses including an undergraduate lab course on water quality sensors and a graduate course on water quality assessment and monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氯、氯胺、臭氧和过氧化氢等化学氧化剂广泛用于水处理中,作为消毒剂来灭活病原体,并作为反应剂来减少饮用水源中的有机污染物。这些化学氧化剂还会与有机污染物和溶解有机物 (DOM) 发生反应,生成副产物,由于其潜在毒性,可能对人类健康产生不利影响。目前,已在处理过的饮用水中检测到数百种副产品。然而,只有有限数量的副产物进行了毒性评估,因为目前用于评估其毒性的方案依赖于缓慢且低效的逐个化学品评估方法。该职业项目的总体目标是开发一种新方法来识别经化学氧化剂处理的饮用水中的有毒副产品及其前体。这种新颖的方法,即反应性定向分析 (RDA),建立在药物开发和化学风险评估领域首创的技术和方案的基础上,可识别经化学氧化剂处理的饮用水样品中具有相似毒性机制的所有副产物。该项目的成功完成将通过产生新的基础知识来理解、控制和减轻化学氧化剂处理的饮用水中有毒副产品及其前体的形成,从而造福社会。通过学生教育和培训,包括对约翰·霍普金斯大学研究生的指导,将进一步造福社会。水处理中使用的化学氧化剂与饮用水源中的有机污染物和溶解有机物 (DOM) 发生反应,产生多种副产品。然而,对饮用水副产品毒性的全面评估仍然难以实现。该职业项目将解决这一关键的知识差距。为了推进这一目标,首席研究员 (PI) 提议开发并应用一种新方法来检测有毒副产物,称为反应导向分析 (RDA)。这种创新方法利用药物开发和化学风险评估领域首创的检测方法和方案来识别处理后的饮用水中的有毒有机亲电体(已知的最大一类毒物)并阐明其前体。本研究的具体目标是:1) 开发一种新型的基于微珠的 RDA 检测方法,用于检测复杂水基体中的有机亲电子试剂,2) 研究酚醛 DOM 模型反应产生的有机亲电子试剂的形成和反应机制化合物与化学氧化剂,以及 3) 研究 DOM 分离物、处理过的废水和地表水与化学氧化剂反应产生的有机亲电子试剂的形成。该项目的成功完成有可能产生变革性影响,通过产生基础知识来推动开发和实施用于识别有毒副产品及其前体的新框架,该框架可用于最大程度地减少和减轻饮用水处理系统中有毒副产品及其前体的形成。为了实现这个职业项目的教育和培训目标,PI 将利用他与食品项目 (TFP) 的持续合作来开发和实施一个课外计划 (EnviroSense),让中学生和高中生接触到设计和应用水质传感器。此外,PI 计划开发两门新课程,包括关于水质传感器的本科实验课程和关于水质评估与监测的研究生课程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carsten Prasse其他文献
Carsten Prasse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
血小板内皮聚集受体1在常染色体显性遗传性多囊肾病发生发展中的作用及机制研究
- 批准号:82300799
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FERMT2/DDX3X信号轴促进胰腺癌发生发展的作用及机制研究
- 批准号:82372605
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
O-GlcNAc糖基化修饰稳定YTHDC1蛋白促进胶质母细胞瘤发展的机制研究
- 批准号:82303835
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 55.66万 - 项目类别:
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 55.66万 - 项目类别:
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 55.66万 - 项目类别:
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 55.66万 - 项目类别:
CAREER: Development of Novel High-Performance Carbon Sink Concrete Materials Using Sustainable Multifunctional Hybrid Additives
职业:使用可持续多功能混合添加剂开发新型高性能碳汇混凝土材料
- 批准号:
2335878 - 财政年份:2024
- 资助金额:
$ 55.66万 - 项目类别:
Standard Grant