Collaborative Research: Experimental constraints on the solidification time scales and fragmentation of submarine lava flows

合作研究:海底熔岩流凝固时间尺度和破碎的实验约束

基本信息

  • 批准号:
    2113709
  • 负责人:
  • 金额:
    $ 38.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Fragmentation of Submarine Lava FlowsAbout 75 percent of volcanoes on Earth erupt under submarine conditions. This project deals with investigating the interaction between submarine lava flows and seawater. As lava comes in direct contact with seawater during submarine volcanic eruptions, the water cools the lava rapidly causing the formation of solid crust on its surface. This affects the rates of submarine lava flows, and the formation of lava flow morphologies. Poor understanding of lava cooling time scales is a significant gap in our ability to model the dynamics of submarine lava flows. Using laboratory experiments with melted natural rocks, this project will investigate the effects of salinity, speed, and temperature of water on the solidification time scales of lavas with a range of compositions. The preliminary results indicate that a film of water vapor forms as soon as it comes in direct contact with the hot lava sample. Depending on the lava and water temperatures, the vapor film breaks down forming numerous bubbles at the lava-water interface and changing the rate of heat loss from the sample. This project will (1) investigate the onset and stability of vapor film during the cooling of lava, (2) quantify the cooling time scales for a range of lava and water temperatures, (3) investigate the effects of water salinity, water speed and lava composition on the cooling of lava, (4) evaluate how submarine lava flow morphologies are formed. This project will train undergraduate and graduate students, and will provide research support to early career investigators. The state-of-the-art experimental facility will be uniquely placed in the southwest US facilitating national and international collaborations. Understanding the conditions behind the formation of lava morphologies is important for estimating effusion rates and dynamics of submarine lava flows. The heat flux from lava to external water is one of the key quantities that govern the solidification time scales and thus the flow dynamics of submarine lavas. The direct field measurement of heat flux at the interface of lava and water is currently absent. Current models assume a convective water flow regime or use heat flux parameters from existing metal-to-water heat transfer studies in order to estimate the rate of heat transfer from lava to water. Due to much lower thermal conductivity of lava as compared to metals, the existing heat transfer formulations from metal-to-water heat transfer studies require experimental validation, and if necessary, new theoretical frameworks need to be developed. This project will use a novel experimental approach to quantify the lava cooling rates in the presence of external water using lava samples from remelted rocks of silicic to mafic compositions. The water boiling regimes and their duration in direct contact with hot lava will be determined from the experiments. The temperature, speed and salinity of water will be varied for a range suitable under submarine conditions. The temperature-dependent thermophysical properties of the experimental samples will be measured. Using these well-constrained properties of the lava sample in the heat transfer model, the convective heat flux from lava to water will be estimated. By integrating experimental and numerical analyses with theoretical development, the project will provide a holistic approach for studying the solidification time scales of lava in the presence of external water. New theoretical frameworks for heat transfer from thermally poor conductive lava to external water will be developed in this project. This will advance our understanding of submarine lava solidification time scales, and will thus provide an important basis to improve our understanding of the dynamics of submarine volcanic eruptions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。 海底熔岩流的破碎地球上大约 75% 的火山是在海底条件下喷发的。该项目致力于研究海底熔岩流与海水之间的相互作用。由于海底火山喷发期间熔岩与海水直接接触,水迅速冷却熔岩,导致其表面形成固体地壳。这会影响海底熔岩流的速率以及熔岩流形态的形成。对熔岩冷却时间尺度的了解不足是我们模拟海底熔岩流动力学能力的一个重大差距。该项目将利用融化的天然岩石进行实验室实验,研究水的盐度、速度和温度对各种成分的熔岩凝固时间尺度的影响。初步结果表明,一旦与热熔岩样本直接接触,就会形成一层水蒸气膜。根据熔岩和水的温度,蒸气膜破裂,在熔岩-水界面处形成大量气泡,并改变样品的热损失率。该项目将 (1) 研究熔岩冷却过程中蒸气膜的开始和稳定性,(2) 量化一系列熔岩和水温的冷却时间尺度,(3) 研究水盐度、水速和温度的影响熔岩成分对熔岩冷却的影响,(4)评估海底熔岩流形态是如何形成的。该项目将培训本科生和研究生,并为早期职业调查人员提供研究支持。最先进的实验设施将位于美国西南部独特的位置,促进国内和国际合作。了解熔岩形态形成背后的条件对于估计海底熔岩流的流出率和动态非常重要。从熔岩到外部水的热通量是控制凝固时间尺度以及海底熔岩流动动力学的关键量之一。目前还没有对熔岩和水界面热通量的直接现场测量。当前模型假设对流水流状态或使用现有金属到水传热研究中的热通量参数来估计从熔岩到水的传热速率。由于熔岩的导热率比金属低得多,金属到水传热研究的现有传热公式需要实验验证,如有必要,还需要开发新的理论框架。该项目将采用一种新颖的实验方法,使用来自硅质到镁铁质成分的重熔岩石的熔岩样品来量化外部水存在下的熔岩冷却速率。水沸腾状态及其与热熔岩直接接触的持续时间将通过实验确定。水的温度、速度和盐度将在适合海底条件的范围内变化。将测量实验样品随温度变化的热物理特性。利用传热模型中熔岩样本的这些受良好约束的特性,可以估计从熔岩到水的对流热通量。通过将实验和数值分析与理论发展相结合,该项目将为研究熔岩在外部水存在下的凝固时间尺度提供整体方法。该项目将开发从导热性差的熔岩到外部水的热传递的新理论框架。这将增进我们对海底熔岩凝固时间尺度的认识,从而为提高我们对海底火山喷发动力学的认识提供重要基础。该奖项体现了NSF的法定使命,经基金会智力评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental constraints on the stability and oscillation of water vapor film—a precursor for phreatomagmatic and explosive submarine eruptions
水蒸气膜稳定性和振荡的实验限制——水蒸气膜喷发和爆炸性海底喷发的前兆
  • DOI:
    10.3389/feart.2022.983112
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Sonder, Ingo;Moitra, Pranabendu
  • 通讯作者:
    Moitra, Pranabendu
Vapor Bubbles and Velocity Control on the Cooling Rates of Lava and Pyroclasts During Submarine Eruptions
海底喷发期间熔岩和火山碎屑冷却速率的蒸气泡和速度控制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pranabendu Moitra其他文献

Pranabendu Moitra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

PKM2-SREBP调控光感受器-RPE糖脂代谢耦联对话在实验性近视模型中的机制研究
  • 批准号:
    82301240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
m6A去甲基化酶Fto在实验性氟中毒突触可塑性损伤中的保护作用与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
ATF-3/AP-1转录因子介导IL-10+调节性B细胞分化抑制实验性口腔黏膜界面炎的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
实验性自身免疫性脑脊髓炎中巨噬细胞调节骨髓造血的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 38.04万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 38.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Every participant counts: Investigating the impact of experimental language research on participants
协作研究:每个参与者都很重要:调查实验语言研究对参与者的影响
  • 批准号:
    2315039
  • 财政年份:
    2023
  • 资助金额:
    $ 38.04万
  • 项目类别:
    Standard Grant
Collaborative Research: ORCC: Carbon fixation in future oceans: experimental adaptation of algal and cyanobacterial CO2-concentrating mechanisms to a changing climate
合作研究:ORCC:未来海洋的碳固定:藻类和蓝藻二氧化碳浓缩机制对气候变化的实验适应
  • 批准号:
    2222518
  • 财政年份:
    2023
  • 资助金额:
    $ 38.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
  • 批准号:
    2246723
  • 财政年份:
    2023
  • 资助金额:
    $ 38.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了