Non-centrosymmetric Quantum Materials through Metal-amine Complexes

金属胺配合物的非中心对称量子材料

基本信息

  • 批准号:
    2113682
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Non-technical summaryWith this project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, principal investigator (PI) Prof. Efrain Rodriguez and his research group at the University of Maryland will develop new types of quantum materials consisting of elements such as iron, cobalt, and nickel that are sandwiched between thin layers of other elements such as sulfur. The concept of developing new types of electronic materials that possess unique quantum properties can enable the revolution in quantum information long sought after by many scientists. A unique aspect of the work is that the incorporation of metal sulfide layers invokes other physical properties such as magnetism that are enticing for quantum information applications. These layers, however, do not randomly stack on top of one another and instead molecules are inserted that guide the stacking sequence. Chemical control at the atomic level therefore allows these molecules to ‘twist’ or ‘bend’ the metal sulfide layers into producing attractive properties for quantum technologies. This precise control at the atomic scale allows the design of novel quantum materials. These research activities also include outreach to the local community around College Park in education through the use of 3D printers. The PI and his students have taken close to 50 different molecules and materials from chemical databases and turned them into 3D printed structures. Their model kits called MolecularCraft serve as instructional tools in the chemistry classroom in local high schools. The PI collaborates with the faculty at the nearby International High School at Langley Park (IHSLP), which is a school that serves students underrepresented in STEM. The PI and students from the University of Maryland propose to engage with IHSLP students using their local 3D printers but also resources on the university campus. The aim is to teach the students about materials that make technologies possible and to inspire them to consider STEM careers.Technical summaryThis project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, will examine how two or more disparate components can be formed to create new types of hybrid materials which can open new avenues towards emergent phenomena. In the proposed research activities, hybrid materials consist of metal-amine complexes inserted into two-dimensional (2D) metal chalcogenides. The metal-amine molecular units are chiral and serve as structure directing agents to form crystal structures that break inversion symmetry. The research activities also investigate how much hydrogen bonding between the –NH2 groups of the metal amine complexes and the terminal Q2- anions (Q = S and Se) of the metal chalcogenides dictates crystal structure. To give rise to non-centrosymmetric quantum materials, such interactions should either twist or bend the 2D layers. The crystal growth of non-centrosymmetric quantum materials takes place under solvothermal conditions. The solvent for crystal growth is an amine bidendate ligand L that forms [ML3]n+ complexes, where M = Mn, Fe, Co, Ni, or Cu. The hosting MQ layers are classified as tetrahedral transition metal chalcogenides (TTMCs), which in contrast to the well-studied transition metal dichalcogenides (e.g. MoS2, WTe2), have a square metal sublattice and accommodate smaller transition metals of the first row. The targeted phases include Fe- and Ni-based TTMCs for non-centrosymmetric superconductivity and Co- and Mn-based TTMCs for ‘ferroelectric’ itinerant magnetism. Outreach to the local school, IHSLP, uses 3D printing to teach students about inorganic molecules and inorganic materials. Students learn about structure-property relationships and about materials that play important roles in technology such as rechargeable batteries, solar cells, and superconductors. The 3D printing MolecularCraft kits start with Valence Shell Electron Pair Repulsion (VSEPR) theory, to teach students the basics of structure. IHSLP also has 3D printing capabilities, and the PI has a webpage where all the 3D printing files are currently hosted. Representation matters too, so another goal includes demonstrating to the students a more diverse representation in the sciences. The 3D printing project serves as a bridge to connect them with information on the pathways to different STEM careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要通过该项目,在材料研究部固态和材料化学项目的支持下,马里兰大学首席研究员 (PI) Efrain Rodriguez 教授及其研究小组将开发新型量子材料,其中包括铁、钴和镍等元素夹在硫等其他元素的薄层之间。开发具有独特量子特性的新型电子材料的概念可以实现许多科学家长期追求的量子信息革命。这项工作的一个独特之处在于,金属硫化物层的结合会激发其他物理特性,例如磁性,这对量子信息应用很有吸引力,然而,这些层并不是随机堆叠在一起的,而是插入了引导分子。因此,原子水平上的化学控制允许这些分子“扭曲”或“弯曲”金属硫化物层,从而产生对量子技术有吸引力的特性,从而可以设计出新颖的量子材料。活动也PI 和他的学生从化学数据库中获取了近 50 种不同的分子和材料,并将其转化为名为 MolecularCraft 的 3D 打印结构。 PI 与附近兰利公园国际高中 (IHSLP) 的教师合作,该学校为 STEM 领域的学生提供服务。 PI 和马里兰大学的学生建议使用当地的 3D 打印机以及大学校园的资源与 IHSLP 学生互动,目的是向学生传授使技术成为可能的材料,并激励他们考虑 STEM 职业。摘要该项目由材料研究部的固态和材料化学项目支持,将研究如何形成两种或多种不同的成分来创造新型的混合材料,从而为新兴现象开辟新的途径。在拟议的研究活动中,杂化材料由插入二维(2D)金属硫属化物中的金属胺络合物组成,金属胺分子单元是手性的,可作为结构导向剂形成打破反演对称性的晶体结构。研究金属胺络合物的 –NH2 基团与金属硫属化物的末端 Q2- 阴离子(Q = S 和 Se)之间的氢键程度决定了晶体结构,例如相互作用应该扭曲或弯曲二维层。非中心对称量子材料的晶体生长发生在溶剂热条件下。晶体生长的溶剂是形成 [ML3]n+ 络合物的胺二齿配体 L,其中 M = Mn、Fe。 、Co、Ni 或 Cu 主体 MQ 层被归类为四面体过渡金属硫属化物 (TTMC),这与经过充分研究的过渡金属二硫属化物不同。 (例如 MoS2、WTe2),具有方形金属子晶格,并容纳第一行较小的过渡金属,这些相包括用于目标非中心对称超导性的 Fe 基和 Ni 基 TTMC 以及用于“铁电”的 Co 和 Mn 基 TTMC。当地学校 IHSLP 使用 3D 打印向学生教授无机分子和无机材料。结构与性能之间的关系以及在可充电电池、太阳能电池和超导体等技术中发挥重要作用的材料。3D 打印 MolecularCraft 套件从价层电子对排斥 (VSEPR) 理论开始,向学生讲授 IHSLP 结构的基础知识。还具有 3D 打印功能,并且 PI 有一个网页,其中当前托管所有 3D 打印文件。表示也很重要,因此另一个目标包括向学生展示更多内容。 3D 打印项目充当了一座桥梁,将他们与不同 STEM 职业道路的信息联系起来。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,认为值得支持。审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polar Ferromagnetic Metal by Intercalation of Metal–Amine Complexes
金属胺络合物插层的极性铁磁金属
  • DOI:
    10.1021/acs.chemmater.1c00540
  • 发表时间:
    2021-07-13
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Huafei Zheng;B. Wilfong;D. Hickox;J. Rondinelli;P. Zavalij;E. Rodriguez
  • 通讯作者:
    E. Rodriguez
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Efrain Rodriguez其他文献

Conceptual design and dimensional optimization of the linear delta robot with single legs for additive manufacturing
用于增材制造的单腿线性Delta机器人的概念设计和尺寸优化
On-the-fly autonomous control of neutron diffraction via physics-informed Bayesian active learning
通过基于物理的贝叶斯主动学习对中子衍射进行动态自主控制
  • DOI:
    10.1063/5.0082956
  • 发表时间:
    2021-08-19
  • 期刊:
  • 影响因子:
    15
  • 作者:
    A. McDannald;M. Frontzek;A. Savici;M. Doucet;Efrain Rodriguez;Kate Meuse;Jessica Opsahl;D. Samarov;I. Takeuchi;W. Ratcliff;A. Kusne
  • 通讯作者:
    A. Kusne
Expert system to implement STEP-NC data interface model on CNC machine
在数控机床上实现STEP-NC数据接口模型的专家系统
Parametric Passive-Filter optimization Based on the Determinant Decision Diagram
基于行列式决策图的参数无源滤波器优化
Machine learning modeling of superconducting critical temperature
超导临界温度的机器学习建模
  • DOI:
    10.1038/s41524-018-0085-8
  • 发表时间:
    2017-09-08
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    V. Stanev;C. Oses;A. Kusne;Efrain Rodriguez;J. Paglione;S. Curtarolo;I. Takeuchi
  • 通讯作者:
    I. Takeuchi

Efrain Rodriguez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Efrain Rodriguez', 18)}}的其他基金

EAGER: Exploring the Role of Copper Sulfides in Room Temperature Superconductors
EAGER:探索硫化铜在室温超导体中的作用
  • 批准号:
    2403985
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Global Centers Track 2: Developing Solutions to Decarbonize Emissions and Fuels
全球中心轨道 2:开发排放和燃料脱碳解决方案
  • 批准号:
    2330509
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
American Chemical Society Spring 2019 National Meeting Symposium: ?Structure-Property Correlations in Functional Inorganic Materials?
美国化学会2019年春季全国会议研讨会:“功能无机材料的结构-性能相关性”
  • 批准号:
    1924451
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
American Chemical Society Spring 2019 National Meeting Symposium: ?Structure-Property Correlations in Functional Inorganic Materials?
美国化学会2019年春季全国会议研讨会:“功能无机材料的结构-性能相关性”
  • 批准号:
    1924451
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER:Designing Hund's Metals from Transition Metal Sulfides
职业:利用过渡金属硫化物设计洪德金属
  • 批准号:
    1455118
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

非中心对称金属磷化物的异质位点设计及其协同催化加氢研究
  • 批准号:
    22378224
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CaAl2Si2型中心对称稀土磁斯格明子材料拓扑输运性质研究
  • 批准号:
    12374105
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
非中心对称二维层状材料电光系数的第一性原理研究
  • 批准号:
    12374092
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于中心对称破缺结构的偏振可感知光电探测器基础研究
  • 批准号:
    62375042
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
中心对称磁性金属间化合物中磁斯格明子形成和稳定机制及物性调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Excellence in Research: Investigation of novel spin textures in non-centrosymmetric magnetic materials
卓越研究:非中心对称磁性材料中新型自旋纹理的研究
  • 批准号:
    2302420
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Investigation of topological spin texture and magnetoelectric coupling in non-centrosymmetric orthorhombic oxides
LEAPS-MPS:非中心对称正交氧化物中拓扑自旋织构和磁电耦合的研究
  • 批准号:
    2213443
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Shape adaptable, non-centrosymmetric viral scaffolds for assembly of self-propelled nanomaterials
用于组装自驱动纳米材料的形状适应性强、非中心对称的病毒支架
  • 批准号:
    2002941
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Material development and physical property study of new locally non-centrosymmetric uranium compounds
新型局部非中心对称铀化合物材料开发及物性研究
  • 批准号:
    20K03827
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of giant spin-orbit torque in artificial superlattice without inversion symmetry
无反演对称性人工超晶格中巨自旋轨道力矩的研究
  • 批准号:
    18J14617
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了