CAREER: Inference with graphs: density skeleton and Markov missing graph

职业:图推理:密度骨架和马尔可夫缺失图

基本信息

  • 批准号:
    2141808
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This project introduces novel frameworks for using graphs in analyzing complex datasets. These new applications of graphs allow researchers to investigate the intricate relation among quantities of interest. The newly developed methods will offer novel directions for studying the growth and evolution of a galaxy. The PI also plans to develop methodologies to handle complex missing data problems in the National Alzheimer's Coordinating Center's database. The project highlights how abstract mathematical objects like graphs offer a unified treatment on problems arising from different fields such as astronomy and dementia studies. The PI will also initiate several new educational programs and engage both graduate and undergraduate students in research in various ways. The PI plans to investigate two novel research directions of applying graphs to statistical problems. In the first direction, the PI develops a novel graphical approach called density skeleton, an undirected graph summarizing the shape of the covariate distribution. The PI will study how to apply density skeleton to various statistical learning problems, including regression, algorithmic fairness, and topological data analysis. In the second part of the project, the PI develops a new graph-based method called Markov missing graph to handle missing data problems. The Markov missing graph defines an identifying assumption to recover the missing entries' distribution. The PI intends to study how the modeling, computation, and efficiency theory interacts with graph geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目介绍了用于分析复杂数据集的新颖框架。这些图表的这些新应用使研究人员能够研究关注量之间的复杂关系。新开发的方法将为研究银河系的生长和演变提供新的方向。 PI还计划开发方法,以处理国家阿尔茨海默氏症协调中心的数据库中复杂的缺失数据问题。该项目强调了诸如图形之类的抽象数学对象如何提供有关由天文学和痴呆症研究等不同领域引起的问题的统一处理。 PI还将启动几个新的教育计划,并以各种方式让研究生和本科生参与研究。 PI计划研究将图形应用于统计问题的两个新型研究方向。在第一个方向上,PI开发了一种新型的图形方法,称为密度骨骼,这是一个无方向的图,总结了协变量分布的形状。 PI将研究如何将密度骨骼应用于各种统计学习问题,包括回归,算法公平性和拓扑数据分析。在项目的第二部分中,PI开发了一种基于图形的新方法,称为Markov缺少图形来处理缺失的数据问题。马尔可夫丢失图定义了一个识别假设,以恢复缺失条目的分布。 PI打算研究建模,计算和效率理论如何与图形几何相互作用。该奖项反映了NSF的法定任务,并使用基金会的智力优点和更广泛的影响评估标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Emptiness Inside: Finding Gaps, Valleys, and Lacunae with Geometric Data Analysis
  • DOI:
    10.3847/1538-3881/ac961e
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gabriella Contardo;D. Hogg;Jason A. S. Hunt;J. Peek;Yen-Chi Chen
  • 通讯作者:
    Gabriella Contardo;D. Hogg;Jason A. S. Hunt;J. Peek;Yen-Chi Chen
Linear convergence of the subspace constrained mean shift algorithm: from Euclidean to directional data
子空间约束均值平移算法的线性收敛:从欧几里德到方向数据
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yen-Chi Chen其他文献

Applied Directional Statistics: Modern Methods and Case Studies
  • DOI:
    10.1080/00031305.2021.1949931
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yen-Chi Chen
  • 通讯作者:
    Yen-Chi Chen
Statistical Inference with Local Optima
Handbook of Mixture Analysis.
Pattern graphs: A graphical approach to nonmonotone missing data
  • DOI:
    10.1214/21-aos2094
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yen-Chi Chen
  • 通讯作者:
    Yen-Chi Chen

Yen-Chi Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yen-Chi Chen', 18)}}的其他基金

Novel Missing Data Approaches for Corrupted Longitudinal Data
针对损坏的纵向数据的新颖的缺失数据方法
  • 批准号:
    2112907
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Statistical Analysis Using Density Surrogates
使用密度替代物进行统计分析
  • 批准号:
    1810960
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

边缘智能下基于张量计算的时空场景图高效推理方法研究
  • 批准号:
    62302131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于模块化推理的多标签深度概率图神经网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于上下文特征图推理的小目标检测方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图像美学质量评价模型的可解释性研究
  • 批准号:
    62001385
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向关系推理的图神经网络关键问题研究
  • 批准号:
    62076021
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs
使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具
  • 批准号:
    10761637
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
CIF: III: Medium: MoDL+: Analytical Foundations for Deep Learning and Inference over Graphs
CIF:III:媒介:MoDL:深度学习和图推理的分析基础
  • 批准号:
    2212318
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Inference for Networks: Bridging the Gap between Metric Spaces and Graphs
协作研究:网络推理:弥合度量空间和图之间的差距
  • 批准号:
    2015134
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Inference for Networks: Bridging the Gap between Metric Spaces and Graphs
协作研究:网络推理:弥合度量空间和图之间的差距
  • 批准号:
    2015298
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了