Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses

合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀

基本信息

  • 批准号:
    2112898
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The adverse health effects of diesel engine particulate emissions have been firmly established by many toxicological studies over the past few decades. These fine particulates smaller than 2.5 microns have been linked to premature cardiovascular and respiratory deaths, as well as lung cancer. While electrostatic precipitation was first demonstrated in 1824, thus far, use of the technology to remove combustion particulates has been limited to large power plants that can accommodate large secondary treatment devices. Reducing the overall size of this technology is necessary to open up new applications for electrostatic precipitation in mobile sources, such as ships and trucks. Our approach to electrostatic precipitation using plasma (a superheated state of matter) together with ultra-high frequency high voltage pulsing represents a novel application of an old technology. Preliminary results have shown significant promise in reducing particulate emissions, but the underlying mechanisms are poorly understood. The goal of this project is to address these knowledge gaps and identify the mechanisms for particulate removal in plasma enhanced electrostatic precipitation. If successful, this approach will enable development of much more compact electrostatic precipitators that could potentially transform diesel particulate mitigation technology for mobile sources. Further benefits to society result from outreach to high school teachers in the Los Angeles area to improve STEM teaching for underrepresented students. Outreach through professional societies will improve chemistry teaching and provide research opportunities for undergraduate students, thus improving scientific literacy.Preliminary results by the research team show that nanosecond high voltage pulsed plasma provides significant enhancement over conventional electrostatic precipitators in removing diesel engine particulates. However, the fundamental mechanism(s) underlying this enhancement remain poorly understood. The overall goal of this research is to explore the application of plasma enhanced nanosecond high voltage pulsed discharges as a novel approach for electrostatic precipitation. The specific research objectives designed to achieve this goal include: i) spectroscopic examination of ion mobilities and species generated by nanosecond high voltage pulse discharge, ii) characterization of size-dependent particle charge distributions, iii) multi-physics computational fluid dynamics modeling of nanosecond high voltage pulse electrostatic precipitation, and iv) investigation of the role of streamers in the ESP process. Results from this systematic study will provide mechanistic insight into the plasma enhanced electrostatic precipitation process. Such information is necessary to design systems to overcome current limitations and further improve particle removal efficiency. The nature of this work is inherently interdisciplinary, involving high voltage electronics, electrostatics, and fluid-dynamics, as well as combustion and aerosol science. This project brings together researchers with complimentary expertise to perform the research, as well as provide collaborative training opportunities for the student researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去几十年来,许多毒理学研究已证实柴油发动机颗粒物排放对健康产生不利影响。这些小于 2.5 微米的细颗粒物与心血管和呼吸系统过早死亡以及肺癌有关。虽然静电除尘技术于 1824 年首次得到证实,但迄今为止,该技术去除燃烧颗粒的用途仅限于可容纳大型二级处理装置的大型发电厂。为了开辟静电除尘在船舶和卡车等移动源中的新应用,必须减小该技术的整体尺寸。我们使用等离子体(物质的过热状态)和超高频高压脉冲进行静电除尘的方法代表了旧技术的新颖应用。初步结果显示在减少颗粒物排放方面具有重大前景,但其潜在机制却知之甚少。该项目的目标是解决这些知识差距并确定等离子体增强静电沉淀中颗粒去除的机制。如果成功,这种方法将有助于开发更紧凑的静电除尘器,从而有可能改变移动源的柴油颗粒物减排技术。向洛杉矶地区的高中教师伸出援手,改善代表性不足的学生的 STEM 教学,从而为社会带来进一步的好处。通过专业协会进行推广将改善化学教学,并为本科生提供研究机会,从而提高科学素养。研究小组的初步结果表明,纳秒高压脉冲等离子体在去除柴油发动机颗粒物方面比传统静电除尘器具有显着增强。然而,这种增强背后的基本机制仍然知之甚少。本研究的总体目标是探索等离子体增强纳秒高压脉冲放电作为静电除尘新方法的应用。为实现这一目标而设计的具体研究目标包括:i)纳秒高压脉冲放电产生的离子迁移率和物质的光谱检查,ii)尺寸依赖性粒子电荷分布的表征,iii)纳秒的多物理计算流体动力学建模高压脉冲静电除尘,以及 iv) 研究流光在 ESP 过程中的作用。这项系统研究的结果将为等离子体增强静电沉淀过程提供机制见解。这些信息对于设计系统以克服当前限制并进一步提高颗粒去除效率是必要的。这项工作本质上是跨学科的,涉及高压电子学、静电学、流体动力学以及燃烧和气溶胶科学。该项目汇集了具有互补专业知识的研究人员来进行研究,并为学生研究人员提供协作培训机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ion density-enhanced electrostatic precipitation using high voltage nanosecond pulses
使用高压纳秒脉冲的离子密度增强静电沉淀
  • DOI:
    10.1039/d3va00148b
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Boxin;Aravind, Indu;Yang, Sisi;Weng, Sizhe;Zhao, Bofan;Johnson, Grace;Brown, Lucas;Olfert, Jason;Jung, Heejung;Cronin, Stephen B.
  • 通讯作者:
    Cronin, Stephen B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Cronin其他文献

Team Minion 1 of 11 Design of the Minion Research Platform for the 2018 Maritime RobotX Challenge
Minion 团队 1 of 11 2018 年海事 RobotX 挑战赛 Minion 研究平台设计
  • DOI:
    10.29128/geomatik.705988
  • 发表时间:
    2018-12-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jamie E. Barnes;Nate D. Bloom;Stephen Cronin;Grady C. Delp;Juan L. Halleran;M. R. Helms;J. James;Hendrickson;Nicholas R. Middlebrooks;Nicholas Moline;James B. Near;J. Romney;M. Schoener;N. Schultz;D. Thompson;T. Zuercher;Dr. Charles F. Reinholtz;Dr. Eric J. Coyle;P. Currier;B. Butka;C. Hockley
  • 通讯作者:
    C. Hockley

Stephen Cronin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Cronin', 18)}}的其他基金

Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring thermionic multiple barrier heterostructures and thermoelectric energy conversion using 2D layered heterostructures
合作研究:利用二维层状异质结构探索热离子多重势垒异质结构和热电能量转换
  • 批准号:
    2323031
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge
使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射
  • 批准号:
    2204667
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge
使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射
  • 批准号:
    2204667
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Detailed Mechanistic Pathways of Surface Catalysis using SERS Spectroscopy: A Joint Theoretical and Experimental Synergistic Approach
合作研究:使用 SERS 光谱的表面催化的详细机理路径:理论和实验联合协同方法
  • 批准号:
    2106480
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CAS: Mechanistic Study of Reaction Intermediates in Nanoparticle-Enhanced Plasma-Assisted Catalysis
CAS:纳米粒子增强等离子体辅助催化反应中间体的机理研究
  • 批准号:
    1954834
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: In Situ Surface Spectroscopy of 2D Material-based Electrocatalysis and Photoelectrocatalysis
合作研究:二维材料电催化和光电催化的原位表面光谱
  • 批准号:
    2012845
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Cross-plane and In-plane Transport in 2D Layered Heterostructures
合作研究:了解二维层状异质结构中的跨平面和面内传输
  • 批准号:
    1905357
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: A Mechanistic Study of Chemical Enhancement in Surface Enhanced Raman Spectroscopy and Graphene Enhanced Raman Spectroscopy
合作研究:表面增强拉曼光谱和石墨烯增强拉曼光谱化学增强的机理研究
  • 批准号:
    1708581
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
UNS:Novel Photocatalysts based on TiO2-Passivated III-V Compounds for CO2 Reduction
UNS:基于 TiO2 钝化 III-V 族化合物的新型光催化剂,用于 CO2 还原
  • 批准号:
    1512505
  • 财政年份:
    2015
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
  • 批准号:
    12372297
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
含能等离子体流在固体电推力器中的演化机理研究
  • 批准号:
    52302485
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂激光等离子体环境下束间能量转移的理论模拟研究
  • 批准号:
    12375239
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
紧凑环等离子体与磁化等离子体融合过程实验研究
  • 批准号:
    12375226
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
等离子体多维界面耦合强化锂金属负极及其电化学性能机制研究
  • 批准号:
    52372235
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Cardiometabolic Consequences And Pathway Of Weight Gain Associated With Dolutegravir-Based Antiretroviral Therapy In Haiti. A Collaborative Study Between GHESKIO And CCASAnet
海地基于多替拉韦的抗逆转录病毒治疗相关的心脏代谢后果和体重增加途径。
  • 批准号:
    10750906
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318494
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Environmental Agents as Modulators of Disease Processes
环境因素作为疾病过程的调节剂
  • 批准号:
    10852393
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Effects of Genetic ANGPTL3 Deficiency on Hepatic Lipid Regulation and Lipoprotein Production
遗传性 ANGPTL3 缺陷对肝脏脂质调节和脂蛋白产生的影响
  • 批准号:
    10605624
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
2023 International Society for Vaccines (ISV) Annual Congress, October 22-25, Lausanne, Switzerland
2023 年国际疫苗协会 (ISV) 年会,10 月 22 日至 25 日,瑞士洛桑
  • 批准号:
    10754840
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了