Collective Atom Interaction with Photons

原子与光子的集体相互作用

基本信息

  • 批准号:
    2109987
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Small, cold objects behave in ways that are incredibly bizarre compared to larger, familiar objects of our normal experience. This strange behavior can become more emphatic when many objects interact with each other. Recent advances in our control of small objects have led to prospects of quantum computers and quantum simulators, which could lead to astounding advances in our computational abilities. Studies of this type in Europe, Asia, and the Americas are leading to rapid advances in the complexity of systems under our control. This project will use theoretical and computational methods to study the interaction between many atoms using light, which has been proposed as a platform for quantum computation and quantum simulation. In particular, this group will focus on cases where the atoms are position into a regular array. There are many groups around the world that have demonstrated the ability to hold the atoms, for example, on the corners of a repeating square and this group will investigate realistic situations to predict and understand their collective evolution. These systems are hard to understand because changes to one atom affect those on a second atom, which affect those on a third atom …, but their study is eminently worthwhile because it leads to a richness in outcome which is intrinsically interesting and might also serve as the basis of quantum sensors, computers, or simulators. A key feature of these studies will be the development of theoretical and computational techniques to include all aspects of light-atom interactions, including the recoil of atoms, the polarization of the photon, and many-body coherences.The focus of this project is the collective interaction of atoms with light where the presence of many atoms changes how they individually interact with the photons. The group will mainly treat atom arrays where the lattice spacing is smaller than the wavelength. For this condition, the retarded dipole-dipole interaction between atoms leads to collective photon-atom interaction: the interaction is qualitatively different from that of a photon with a single atom. In one group of projects, the group will explore the effect where single photons interacting with an array of atoms leads to momentum and energy transferred to the atoms' center-of-mass motion. This will be investigated at two levels: the approximation where a sudden interaction is assumed and a more accurate treatment including the center of mass quantized motion. The group will investigate several cases, including how specific collective states lead to kicks for particular atoms in the array and how array pairs could be used to entangle distant qubits and to study fundamental optomechanical studies. The cavity configuration could lead to especially large center-of-mass recoil, which would affect their applications and could lead to interesting fundamental physics as well. The other group of projects will study how several photons interact with the atom array. New phenomena are expected because when one photon is incident on the array, any atom in the array can be excited, but, with more photons, already excited atoms cannot absorb a second photon. This constraint leads to different correlations and entanglement in the atom array compared to the one photon cases. One possibility for entanglement is in the spatial wave function of the different atoms because the photon recoil will depend on the presence of excitations of atoms in the array. The group will also study correlation in the photons; correlation can occur when photons are emitted through correlated spontaneous decay during superradiance or could occur when the array transmits photons in pairs or more.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与我们正常经验中较大、熟悉的物体相比,小而冷的物体的行为方式非常奇怪,当许多物体相互作用时,这种奇怪的行为会变得更加明显。量子计算机和量子模拟器,这可能会导致我们的计算能力取得惊人的进步。在欧洲、亚洲和美洲,这种类型的研究正在导致我们控制下的系统的复杂性迅速进步。该项目将使用理论和计算。研究许多原子之间相互作用的方法使用光,它已被提议作为量子计算和量子模拟的平台,该小组将特别关注原子排列成规则阵列的情况。世界上有许多小组已经证明了保持原子的能力。例如,重复正方形的角上的原子,该小组将研究现实情况以预测和理解它们的集体演化,这些系统很难理解,因为一个原子的变化会影响第二个原子上的原子,进而影响第二个原子上的原子。第三个原子......,但他们的研究非常值得因为它会带来丰富的结果,这本质上是有趣的,并且也可以作为量子传感器、计算机或模拟器的基础,这些研究的一个关键特征将是理论和计算技术的发展,以涵盖光的各个方面。原子相互作用,包括原子的反冲、光子的偏振和多体相干性。该项目的重点是原子与光的集体相互作用,其中许多原子的存在改变了它们单独与光子相互作用的方式。将主要治疗晶格间距小于波长的原子阵列在这种情况下,原子之间的延迟偶极子-偶极子相互作用导致集体光子-原子相互作用:这种相互作用在性质上不同于单个原子中的光子的相互作用。在一系列项目中,该小组将探索单光子与原子阵列导致动量和能量转移到原子质心运动的效应,这将在两个层面上进行研究:近似值。假设发生突然的相互作用,并进行更准确的处理,包括质心量子化运动。该小组将研究几种情况,包括特定的集体状态如何导致阵列中特定原子的踢动,以及如何使用阵列对来纠缠遥远的量子位。并研究基础光力学研究。腔体结构可能会导致特别大的质心反冲,这会影响它们的应用,并可能导致有趣的基础物理研究。另一组项目将研究几个光子如何与光子相互作用。原子数组。这种现象是预料之中的,因为当一个光子入射到阵列上时,阵列中的任何原子都可以被激发,但是,随着光子的增加,已经激发的原子无法吸收第二个光子,这一限制导致原子阵列中不同的相关性和纠缠。对于单光子情况,纠缠的一种可能性是不同原子的空间波函数,因为光子反冲将取决于阵列中原子激发的存在。什么时候光子在超辐射期间通过自发衰变发射,或者当阵列成对或更多地传输光子时可能发生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Theoretical study of early-time superradiance for atom clouds and arrays
原子云和阵列早期超辐射的理论研究
  • DOI:
    10.1103/physreva.104.063706
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    F. Robicheaux
  • 通讯作者:
    F. Robicheaux
Atom recoil in collectively interacting dipoles using quantized vibrational states
使用量子振动态的集体相互作用偶极子中的原子反冲
  • DOI:
    10.1103/physreva.105.033706
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Suresh, Deepak A.;Robicheaux, F.
  • 通讯作者:
    Robicheaux, F.
Laser-Driven Superradiant Ensembles of Two-Level Atoms near Dicke Regime
迪克政权附近激光驱动的两能级原子超辐射系综
  • DOI:
    10.1103/physrevlett.127.243602
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ferioli, G.;Glicenstein, A.;Robicheaux, F.;Sutherland, R. T.;Browaeys, A.;Ferrier
  • 通讯作者:
    Ferrier
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francis Robicheaux其他文献

Total ionization cross section for electron-hydrogen scattering using a time-dependent close-coupling method.
使用依赖于时间的紧密耦合方法的电子-氢散射的总电离截面。
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
附着于超精细分裂核心的里德堡态的长程相互作用理论
  • DOI:
    10.1103/physreva.97.022508
  • 发表时间:
    2017-11-28
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Francis Robicheaux;Francis Robicheaux;Donald Booth;M. Saffman
  • 通讯作者:
    M. Saffman
Regularities in calculated photoionization cross sections for the halogens.
计算出的卤素光电离截面的规律。
Computational and theoretical analysis of electron plasma cooling by resonant interaction with a microwave cavity
通过与微波腔谐振相互作用进行电子等离子体冷却的计算和理论分析
  • DOI:
    10.1063/5.0012756
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    E. Kur;Francis Robicheaux;N. Evetts;J. Fajans;A. GuerraIV;W. Hardy;E. Hunter;Z. Schroeder
  • 通讯作者:
    Z. Schroeder
Simulation of motion and radiative decay of Rydberg hydrogen atoms in electric and magnetic fields
里德伯氢原子在电场和磁场中的运动和辐射衰变模拟

Francis Robicheaux的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francis Robicheaux', 18)}}的其他基金

Many Facets of Laser-Atom and Dipole-Dipole Interactions
激光-原子和偶极-偶极相互作用的多个方面
  • 批准号:
    1804026
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Precision Tests of Physics Beyond the Standard Model with Antihydrogen
合作研究:超越标准模型的反氢物理精度测试
  • 批准号:
    1806380
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
  • 批准号:
    1500470
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Interactions With and Between Rydberg Atoms
里德伯原子之间的相互作用
  • 批准号:
    1404419
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
  • 批准号:
    1358332
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
  • 批准号:
    1202331
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Few Body Dynamics of Atomic and Molecular Systems
原子和分子系统的少体动力学
  • 批准号:
    0969530
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental and theoretical study of the plasma physics of antihydrogen generation and trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
  • 批准号:
    0903811
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Few Body Dynamics of Atomic and Molecular Systems
原子和分子系统的少体动力学
  • 批准号:
    0653301
  • 财政年份:
    2007
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Few Body Dynamics of Atomic and Molecular Systems
原子和分子系统的少体动力学
  • 批准号:
    0355039
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant

相似国自然基金

X射线脉冲引起的多激发条件下原子核的集体效应
  • 批准号:
    11904404
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
随机相互作用下原子核集体运动的微观机制
  • 批准号:
    11145005
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    专项基金项目
超冷费米原子气体的集体激发及其非线性共振相互作用
  • 批准号:
    11047101
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
SD对壳模型的进一步研究
  • 批准号:
    10675063
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
关于随机相互作用与原子核集体运动的研究
  • 批准号:
    10575070
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Multivalent-ion conducting solids using metal cluster aggregates
使用金属簇聚集体开发多价离子导电固体
  • 批准号:
    19K05496
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural change dynamics of molecular assembles of metal complexes observed by advanced time-resolved spectroscopy
通过先进的时间分辨光谱观察金属配合物分子组装的结构变化动力学
  • 批准号:
    15K05447
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of High-Performance Fuel Cells Based on a Control of Nano-phase Segregation Structures
基于纳米相偏析结构控制的高性能燃料电池的构建
  • 批准号:
    26820355
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Investigations of collective phonon behaviours in lattice thermal conductivity
晶格热导率中集体声子行为的研究
  • 批准号:
    26820284
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Control of magnetic ordering of nanoscale metal and nanoparticle assembly by magnetoelectric effect
通过磁电效应控制纳米级金属和纳米粒子组装体的磁排序
  • 批准号:
    24310093
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了