SBIR Phase I: Dense, Socially-Compliant, Autonomous Delivery Robot
SBIR 第一阶段:密集、符合社会规范的自主送货机器人
基本信息
- 批准号:2136783
- 负责人:
- 金额:$ 25.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research Phase I project is to enable autonomous mobile robots (AMRs) to operate in densely crowded spaces in a safe and socially compliant/acceptable manner. A key potential outcome is the development of a collision avoidance method based on Deep Reinforcement Learning (DRL). This method would be capable of handling dense crowds and optimized to run on compact and power-efficient embedded processors. Such abilities would increase the commercial potential and adoption of learning-based navigation methods that have demonstrated excellent collision avoidance and noise handling capabilities. The technology may unlock commercial opportunities by deploying AMRs in the airport, retail, healthcare, and hospitality industries, where the environments are highly dense and dynamic. The airport industry may derive postive impacts from AMRs that can navigate in complex, indoor environments where global positioning systems (GPS) are not allowed by providing contactless deliveries of food, beverages, and other retail products to travelers at the gate.This Small Business Innovation Research (SBIR) Phase I project investigates a hybrid collision avoidance approach enabling autonomous mobile robots (AMRs) to operate safely in dense crowds, while being socially-compliant in sparse scenarios. Preliminary research has shown that Deep Reinforcement Learning (DRL)-based approaches can compute collision-free robot velocities with inaccurate, uncertain perception data. The proposed DRL-based model will be implemented as an optimized neural network that works on power and cost-efficient embedded processors. The key technical hurdles in this technology are: the DRL model trained in simulation may not perform well in real-world environments (known as sim-to-real gap), the fully-trained DRL model may have some performance degradation compared to the company’s current DRL models due to the lower number of parameters used to run on embedded processors, and the localization modules could compute erroneous locations when the AMR is navigating through a dense crowd due to occlusions. The key objectives of Phase I are to address these challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小型企业创新研究阶段I项目的更广泛的影响/商业潜力是使自动移动机器人(AMRS)能够以安全且具有社会符合社会性/可接受的方式在不拥挤的空间中运行。一个关键的潜在结果是开发基于深度强化学习(DRL)的避免碰撞方法。该方法将能够处理密集的人群并进行优化,以在紧凑和效率的嵌入式处理器上运行。这样的能力将提高基于学习的导航方法的商业潜力和采用,这些方法表现出极好的避免碰撞和噪音处理能力。该技术可以通过在机场,零售,医疗保健和酒店业中部署AMR来释放商业机会,在该机场,环境高度密集和动态。 The airport industry may derive postive impacts from AMRs that can navigation in complex, indoor environments where global positioning systems (GPS) are not allowed by providing contactless delivery of food, bedrooms, and other retail products to travelers at the gate.This Small Business Innovation Research (SBIR) Phase I project investigates a hybrid collision avoidance approach enabling autonomous mobile robots (AMRs) to operate safely in dense crowds, while being在稀疏场景中符合社会统一。初步研究表明,基于深的加强学习(DRL)的方法可以使用不准确的,不确定的感知数据来计算无碰撞的机器人速度。拟议的基于DRL的模型将被实施为优化的神经元网络,可在功率和具有成本效益的嵌入式处理器上。这项技术中的主要技术障碍是:在模拟中训练的DRL模型在现实世界环境(称为SIM到真实的差距)中可能表现不佳,与公司当前的DRL模型相比,全面训练的DRL模型可能具有一定的性能降级,这是由于在嵌入式过程中使用嵌入式误差而在嵌入式过程中运行的参数较低,因此在嵌入式过程中运行的是较低的参数,并且是在嵌入式过程中运行的。闭塞。第一阶段的关键目标是应对这些挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估,被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Utsav Patel其他文献
GrASPE: Graph based Multimodal Fusion for Robot Navigation in Unstructured Outdoor Environments
GrASPE:基于图的多模态融合,用于非结构化户外环境中的机器人导航
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
K. Weerakoon;A. Sathyamoorthy;Jing Liang;Tianrui Guan;Utsav Patel;Dinesh Manocha - 通讯作者:
Dinesh Manocha
Robot Navigation in Irregular Environments with Local Elevation Estimation using Deep Reinforcement Learning
使用深度强化学习进行局部高程估计的不规则环境中的机器人导航
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
K. Weerakoon;A. Sathyamoorthy;Utsav Patel;Dinesh Manocha - 通讯作者:
Dinesh Manocha
Tu1575 MAPPING THE BILIARY TRACT: A THREE-DECADE ANALYSIS OF INCIDENCE AND MORTALITY TRENDS IN THE UNITED STATES, A STATE-LEVEL ANALYSIS FROM 1990-2019
- DOI:
10.1016/s0016-5085(24)04457-3 - 发表时间:
2024-05-18 - 期刊:
- 影响因子:
- 作者:
Gautam Maddineni;Silpa Choday;Chun-Wei Pan;Sarina Ailawadi;Augustine Salami;Utsav Patel;Bhaumik Brahmbhatt;Karn Wijarnpreecha - 通讯作者:
Karn Wijarnpreecha
Detection of CAR-T Cell Persistence with Digital Droplet PCR: Correlation of In Vivo Expansion with Clinical Outcomes in a Cohort of B-Cell Lymphoma Patients
- DOI:
10.1182/blood-2023-190332 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Giulio Cassanello;Laetitia Borsu;Maria E. Arcila;Jinjuan Yao;Amir Momeni Boroujeni;Mark Ewalt;Utsav Patel;Roger Chan;Brandon Gray;Alejandro Luna De Abia;Magdalena Corona;Efrat Luttwak;Ivan Landego;Allison Parascondola;Amethyst Saldia;Maria Lia Palomba;Ana Alarcon Tomas;Jessica R Flynn;Sean M. Devlin;Parastoo B. Dahi - 通讯作者:
Parastoo B. Dahi
Utsav Patel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
服务供给方两阶段在线贡献行为的激励机制研究——以公立互联网医院为例
- 批准号:72372016
- 批准年份:2023
- 资助金额:40.6 万元
- 项目类别:面上项目
黄土高原人工刺槐林不同发育阶段水分利用规律与耗水机制
- 批准号:42307415
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
- 批准号:32371612
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
- 批准号:52307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
- 批准号:32303043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: Dense Nanolipid Fluids (DNLFs) for Delivery of Drugs with Poor Bioavailability: Synthesis, Manufacture, and Drug Properties
SBIR 第一阶段:用于递送生物利用度较差的药物的致密纳米脂质流体 (DNLF):合成、制造和药物特性
- 批准号:
2212222 - 财政年份:2022
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
SBIR Phase II: Development of Safe, Energy Dense, High Performance Lithium Ion Batteries
SBIR 第二阶段:开发安全、高能量密度、高性能锂离子电池
- 批准号:
2112154 - 财政年份:2022
- 资助金额:
$ 25.54万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Cost-effective manufacturing of a novel nutrient-dense chickpea dough platform for mass-market processed foods
SBIR 第二阶段:为大众市场加工食品经济高效地制造新型营养丰富的鹰嘴豆面团平台
- 批准号:
2136719 - 财政年份:2022
- 资助金额:
$ 25.54万 - 项目类别:
Cooperative Agreement
SBIR Phase I: A Novel Dense Fiber Array for Astronomical Spectroscopy
SBIR 第一阶段:用于天文光谱学的新型密集光纤阵列
- 批准号:
2111936 - 财政年份:2022
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
SBIR Phase I: Cost-effective manufacturing to enable adoption of a novel nutrient-dense chickpea dough platform in mass-market processed foods
SBIR 第一阶段:经济高效的制造,使新型营养丰富的鹰嘴豆面团平台能够在大众市场加工食品中采用
- 批准号:
1940271 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant