RAPID: Fast COVID-19 Scenario Projections in Presence of Vaccines and Competing Variants
RAPID:在存在疫苗和竞争变种的情况下快速进行 COVID-19 情景预测
基本信息
- 批准号:2135784
- 负责人:
- 金额:$ 18.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
After more than a year, COVID-19 remains a concern worldwide. While the United States is moving towards a fast reopening of economic activities, it is crucial to ensure that it can be done without an increased burden on the healthcare system. As a result, there is an urgency to produce reliable long-term scenario projections of cases, hospitalizations, and deaths to inform policymakers. New challenges in modeling and estimations are emerging due to emerging competing variants with transmissibility advantage, possible waning immunity and immune escape, vaccine hesitancy, and changes in non-pharmaceutical interventions. The project will address these emerging challenges in scenario projections at the state-level in the US. A key advantage of the modeling technique is that it can incorporate various complexities and learn from a changing epidemiological and social environment, and yet it can produce fast projections. The techniques developed in the project will not only be applicable to the US locations but also locations around the world where COVID-19 is still a severe disaster. The scenario modeling framework developed during the project will also set the foundations for quick scenario generation for better preparedness during future epidemics. This project provides training opportunities for a graduate student.The proposed project develops a discrete-time heterogeneous rate model that can incorporate various complexities of COVID-19 and yet produce long-term scenario projections quickly on commodity hardware (2-3 mins/scenario for all US states). The fast projections of cases, hospitalizations, and deaths are enabled by decoupling of the parameter estimations so that they can be learned independently using simple regression techniques. This also results in the elimination of over-fitting arising from simultaneously learning complex interdependent parameters and from high-dimensional machine learning approaches. Projections are generated as probabilistic quantiles for a given scenario, health outcome, week, and location; the quantiles are predicted based on an ensemble of projections resulting from the uncertainties in data inputs and estimations. The project will also develop a novel constrained optimization-based learning approach to estimate the temporal dynamics of competing variants from genomics data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一年多后,COVID-19 仍然是全世界关注的焦点。尽管美国正在迅速重新开放经济活动,但确保在不增加医疗保健系统负担的情况下实现这一目标至关重要。因此,迫切需要对病例、住院和死亡情况进行可靠的长期情景预测,以便为政策制定者提供信息。由于具有传播优势的竞争性变异的出现、免疫力可能减弱和免疫逃逸、疫苗犹豫以及非药物干预措施的变化,建模和估计方面出现了新的挑战。该项目将解决美国州一级情景预测中出现的这些新挑战。建模技术的一个关键优点是它可以整合各种复杂性并从不断变化的流行病学和社会环境中学习,但它可以产生快速预测。 该项目开发的技术不仅适用于美国地区,也适用于全球 COVID-19 仍为严重灾难的地区。该项目期间开发的场景建模框架还将为快速场景生成奠定基础,以便为未来的流行病做好更好的准备。该项目为研究生提供培训机会。拟议的项目开发了一种离散时间异构速率模型,该模型可以整合 COVID-19 的各种复杂性,并在商品硬件上快速生成长期场景预测(每个场景 2-3 分钟)美国所有州)。通过参数估计的解耦,可以快速预测病例、住院和死亡情况,以便可以使用简单的回归技术独立学习它们。这也消除了因同时学习复杂的相互依赖的参数和高维机器学习方法而引起的过度拟合。预测是针对给定场景、健康结果、周和位置生成的概率分位数;分位数是根据数据输入和估计的不确定性产生的预测集合来预测的。该项目还将开发一种新颖的基于约束优化的学习方法,以估计基因组数据中竞争变异的时间动态。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of Delays and Feedthroughs in Dynamic Networked Systems
动态网络系统中的延迟和馈通检测
- DOI:10.1109/lcsys.2022.3233123
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Jahandari, Sina;Srivastava, Ajitesh
- 通讯作者:Srivastava, Ajitesh
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.
- DOI:10.1073/pnas.2113561119
- 发表时间:2022-04-12
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Adjusting for Unmeasured Confounding Variables in Dynamic Networks
调整动态网络中未测量的混杂变量
- DOI:10.1109/lcsys.2022.3233701
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Jahandari, Sina;Srivastava, Ajitesh
- 通讯作者:Srivastava, Ajitesh
Projected resurgence of COVID-19 in the United States in July-December 2021 resulting from the increased transmissibility of the Delta variant and faltering vaccination.
- DOI:10.7554/elife.73584
- 发表时间:2022-06-21
- 期刊:
- 影响因子:7.7
- 作者:Truelove S;Smith CP;Qin M;Mullany LC;Borchering RK;Lessler J;Shea K;Howerton E;Contamin L;Levander J;Kerr J;Hochheiser H;Kinsey M;Tallaksen K;Wilson S;Shin L;Rainwater-Lovett K;Lemairtre JC;Dent J;Kaminsky J;Lee EC;Perez-Saez J;Hill A;Karlen D;Chinazzi M;Davis JT;Mu K;Xiong X;Pastore Y Piontti A;Vespignani A;Srivastava A;Porebski P;Venkatramanan S;Adiga A;Lewis B;Klahn B;Outten J;Orr M;Harrison G;Hurt B;Chen J;Vullikanti A;Marathe M;Hoops S;Bhattacharya P;Machi D;Chen S;Paul R;Janies D;Thill JC;Galanti M;Yamana TK;Pei S;Shaman JL;Healy JM;Slayton RB;Biggerstaff M;Johansson MA;Runge MC;Viboud C
- 通讯作者:Viboud C
The variations of SIkJalpha model for COVID-19 forecasting and scenario projections
用于 COVID-19 预测和情景预测的 SIkJalpha 模型的变化
- DOI:10.1016/j.epidem.2023.100729
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Srivastava, Ajitesh
- 通讯作者:Srivastava, Ajitesh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ajitesh Srivastava其他文献
Computational models of technology adoption at the workplace
工作场所技术采用的计算模型
- DOI:
10.1007/s13278-014-0199-z - 发表时间:
2014 - 期刊:
- 影响因子:2.8
- 作者:
C. Chelmis;Ajitesh Srivastava;V. Prasanna - 通讯作者:
V. Prasanna
DTW+S: Shape-based Comparison of Time-series with Ordered Local Trend
DTW S:基于形状的时间序列与有序局部趋势的比较
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ajitesh Srivastava - 通讯作者:
Ajitesh Srivastava
Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic
学习预测并通过预测从 COVID-19 大流行中吸取教训
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ajitesh Srivastava;V. Prasanna - 通讯作者:
V. Prasanna
Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction
迈向高性能、便携性和生产力:用于性能预测的轻量级增强神经网络
- DOI:
10.1109/hipc50609.2020.00016 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ajitesh Srivastava;Naifeng Zhang;R. Kannan;V. Prasanna - 通讯作者:
V. Prasanna
Rapid Data Integration and Analysis for Upstream Oil and Gas Applications
上游石油和天然气应用的快速数据集成和分析
- DOI:
10.2118/174907-ms - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
C. Cheung;Palash Goyal;G. Harris;O. Patri;Ajitesh Srivastava;Yinuo Zhang;A. Panangadan;C. Chelmis;Randall G. Mckee;Monique Theron;Tamás Németh;V. Prasanna - 通讯作者:
V. Prasanna
Ajitesh Srivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ajitesh Srivastava', 18)}}的其他基金
RAPID: Retrospective COVID-19 Scenario Projections Accounting for Population Heterogeneities
RAPID:考虑人口异质性的回顾性 COVID-19 情景预测
- 批准号:
2333494 - 财政年份:2023
- 资助金额:
$ 18.68万 - 项目类别:
Standard Grant
RAPID: Data-driven Understanding of Imperfect Protection for Long-term COVID-19 Projections
RAPID:数据驱动的对长期 COVID-19 预测不完美保护的理解
- 批准号:
2223933 - 财政年份:2022
- 资助金额:
$ 18.68万 - 项目类别:
Standard Grant
相似国自然基金
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
保障和提升FAST主动反射面性能的关键力学问题研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于FAST和SKA先导阵搜索高银纬脉冲星并研究其垂直银盘分布
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Strep-CaDI: A fast, accurate, and sensitive point-of-care test for Group A Streptococcus
Strep-CaDI:快速、准确且灵敏的 A 组链球菌现场检测
- 批准号:
10699852 - 财政年份:2023
- 资助金额:
$ 18.68万 - 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10676895 - 财政年份:2021
- 资助金额:
$ 18.68万 - 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10456945 - 财政年份:2021
- 资助金额:
$ 18.68万 - 项目类别:
MEDICAL IMAGING AND DATA RESOURCE CENTER (MIDRC)FOR RAPID RESPONSE TO COVID-19 PANDEMIC
医学影像和数据资源中心 (MIDRC) 用于快速应对 COVID-19 大流行
- 批准号:
10506028 - 财政年份:2021
- 资助金额:
$ 18.68万 - 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10313294 - 财政年份:2021
- 资助金额:
$ 18.68万 - 项目类别: