Analysis and Prediction of Magnetospheric Plasma Energy Dynamics with the Wind Driven Magnetospheric-Ionospheric (WINDMI) Model
利用风驱动磁层-电离层 (WINDMI) 模型分析和预测磁层等离子体能量动力学
基本信息
- 批准号:2134451
- 负责人:
- 金额:$ 24.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will provide support for the development of a model of the energy dynamics of plasma populations in the magnetosphere under various solar wind driving conditions, focusing in particular on geomagnetic storms and substorms. The research will achieve a significant insight into how the magnetosphere-ionosphere system responds to solar wind driving conditions. The new model would provide valuable information on how the total energy content and energy transfers among the largest reservoirs within the magnetosphere are to be understood. This information would be used to establish the possible state of the magnetosphere prior to and during geomagnetic events. The new model would be capable of fast and robust predictions that can be compared with results from more comprehensive magnetohydrodynamic (MHD) or kinetic models. The project would produce a software implementation of the model as a product to the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA) and the Space Physics Community Coordinated Modeling Center (CCMC) operated by NASA. Space Weather and its effects are assuming major importance in modern times. The training of students in Electrical Engineering and Systems Engineering in space weather will increase awareness among technologists and help them to become more aware of space weather effects. The scientific methods and model development to be achieved in this project will be incorporated into otherwise highly theoretical courses for engineers. The new model would be computationally inexpensive to run. It can be easily ported to a mobile platform and used by space weather enthusiasts to explore space physics. Undergraduate students, K¬12 students and the public, will be able to run this model and start to appreciate space science while getting a powerful glimpse into the tools and methods of the geospace community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将为在各种太阳风驱动条件下的磁层中的等离子体种群的能量动力学模型提供支持,尤其是集中在地磁风暴和实体上。这项研究将对磁层 - 离子层系统如何应对太阳风驱动条件有重大见解。新模型将提供有关如何理解磁层中最大储量中的总能量含量和能源转移的宝贵信息。这些信息将用于在地磁事件发生之前和期间建立磁层的可能状态。新模型将能够进行快速和稳健的预测,这些预测与更全面的磁流体动力(MHD)或动力学模型相比。该项目将为国家海洋与大气管理局(NOAA)的太空天气预测中心(SWPC)以及由NASA运营的Space Physics社区协调建模中心(CCMC)提供该模型的软件实施。太空天气及其影响在现代具有重要意义。在太空天气中对电气工程和系统工程的学生培训将提高技术人员之间的意识,并帮助他们更加了解太空天气影响。该项目中要实现的科学方法和模型开发将被纳入工程师的高度理论课程中。新模型在计算上的运行便宜。它很容易移植到移动平台上,并由太空天气爱好者使用来探索太空物理。本科生,K -12学生和公众将能够运行该模型并开始欣赏太空科学,同时深入了解地理空地社区的工具和方法。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响审查审查审查标准来通过评估来诚实地通过评估来诚实地支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edmund Spencer其他文献
A Circuit Model for the Interaction of an RF Impedance Probe with Ionospheric Plasmas in the E-Layer and F-Layer Ionosphere Regions
射频阻抗探头与 E 层和 F 层电离层区域电离层等离子体相互作用的电路模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Piyas Chowdhury;Edmund Spencer;Phanindra Sampath Rayapati;Swadesh Patra;S. K. Vadepu - 通讯作者:
S. K. Vadepu
Using only two magnetorquers to de-tumble a 2U CubeSAT
- DOI:
10.1016/j.asr.2018.08.041 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:
- 作者:
Matthew Monkell;Carlos Montalvo;Edmund Spencer - 通讯作者:
Edmund Spencer
Edmund Spencer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edmund Spencer', 18)}}的其他基金
CAREER: Theory, Techniques and Simulations of RF Impedance Probes for Plasma Characterization
职业:用于等离子体表征的射频阻抗探头的理论、技术和模拟
- 批准号:
1151450 - 财政年份:2013
- 资助金额:
$ 24.76万 - 项目类别:
Continuing Grant
NSWP: Space Weather Prediction Using Hybrid Physics/Black-Box Methods
NSWP:使用混合物理/黑盒方法进行空间天气预报
- 批准号:
0720201 - 财政年份:2007
- 资助金额:
$ 24.76万 - 项目类别:
Continuing Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
强子对撞机上一对希格斯粒子产生和衰变过程的精确理论预言
- 批准号:12375076
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
强子三维结构分布函数的理论预言
- 批准号:12375080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于机器学习方法设计和预言多组元合金体系材料的研究
- 批准号:92270104
- 批准年份:2022
- 资助金额:75.00 万元
- 项目类别:重大研究计划
次次领头阶anti-kT以及同类型的喷注函数和pA对撞中喷注向前产生的预言
- 批准号:12175016
- 批准年份:2021
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 24.76万 - 项目类别:
Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 24.76万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 24.76万 - 项目类别:
Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
$ 24.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
$ 24.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)