Collaborative Research: Scalable Linear Algebra and Neural Network Theory

合作研究:可扩展线性代数和神经网络理论

基本信息

  • 批准号:
    2134247
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

These projects will use randomized numerical linear algebra building blocks to develop improved methods in stochastic optimization theory and statistical/machine learning theory. The motivation is that, while machine learning and deep learning methodology has transformed certain applications, such as computer vision and natural language processing, its promised impact on many other areas has yet to be seen. The reason for this is the flip side of why it has been successful where it has. In the applications where it has had the most remarkable successes, people have adopted the following strategy: get large quantities of data; train a neural network model using stochastic first order methods; and implement and apply the model in a user-facing industrial application. There are many well-known limitations with this general approach, ranging from the need for large quantities of data and daunting compute resources to interpretability and robustness issues. These limitations are particularly apparent when using neural networks for problems such as high-performance computing, fluid mechanics/dynamics, temporal supply chain forecasting problems, biotechnology, etc., where interpretability is paramount. This work aims to address central technical issues underlying this approach, namely: while linear algebraic techniques are central to the design and use of modern neural network models, current methodology uses linear algebra in relatively superficial ways. If we have stronger control over the linear algebraic methods, the community will have a more practical theory to guide neural network use in a broad range of applications beyond computer vision and natural language processing. These methods will enable qualitatively more refined scalable implementations and applications of neural network models in a range of scientific and engineering domains. Broader impacts of these projects include mentoring of grant-supported graduate students and postdoctoral researchers.Technically, the work will focus on three general directions: optimization theory, including convex optimization based neural network and going beyond optimization; scalable linear algebra theory, including randomized linear algebra for neural networks, and sparse randomized linear algebra; and statistics and machine learning theory, including implicit regularization, and learning with limited non-iid data. More broadly, the goal is to provide a basis for practical theory that can guide practice, in a manner analogous to how linear algebraic and functional analytic methods underlie practical and useful theory in a broad range of scientific/engineering applications. We expect that such a challenging task is possible since many of the recent developments in machine learning theory and neural network practice have parallels in scientific computing, where there is a long history of what may be called scalable linear algebra for physical/engineering theory. Many of the methods to be developed may be viewed as bridging the interdisciplinary gap between these old ideas and the new challenges we face; and principal investigators have a history of developing interdisciplinary classes, summer schools, workshops related to the topics of the proposed work, and they will continue to do so.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这些项目将使用随机数值线性代数构建块来开发随机优化理论和统计/机器学习理论的改进方法。 其动机是,虽然机器学习和深度学习方法已经改变了某些应用程序,例如计算机视觉和自然语言处理,但其对许多其他领域的预期影响还有待观察。 其原因是它取得成功的另一面。 在它取得最显着成功的应用中,人们采取了以下策略:获取大量数据;使用随机一阶方法训练神经网络模型;并在面向用户的工业应用中实施和应用该模型。 这种通用方法存在许多众所周知的局限性,从需要大量数据和令人畏惧的计算资源到可解释性和鲁棒性问题。 当使用神经网络解决高性能计算、流体力学/动力学、时间供应链预测问题、生物技术等问题时,这些局限性尤其明显,其中可解释性至关重要。 这项工作旨在解决该方法背后的核心技术问题,即:虽然线性代数技术是现代神经网络模型的设计和使用的核心,但当前的方法以相对肤浅的方式使用线性代数。 如果我们对线性代数方法有更强的控制,社区将有更实用的理论来指导神经网络在计算机视觉和自然语言处理之外的广泛应用中的使用。 这些方法将使神经网络模型在一系列科学和工程领域中实现质量上更精细的可扩展实现和应用。这些项目的更广泛影响包括指导受资助的研究生和博士后研究人员。从技术上讲,这项工作将集中在三个大方向上:优化理论,包括基于凸优化的神经网络和超越优化;可扩展的线性代数理论,包括神经网络的随机线性代数和稀疏随机线性代数;统计和机器学习理论,包括隐式正则化和使用有限的非独立同分布数据进行学习。 更广泛地说,目标是为指导实践的实用理论提供基础,类似于线性代数和泛函分析方法如何在广泛的科学/工程应用中成为实用和有用的理论的基础。我们期望这样一项具有挑战性的任务是可能的,因为机器学习理论和神经网络实践的许多最新发展与科学计算有相似之处,在科学计算中,物理/工程理论的可扩展线性代数有着悠久的历史。 许多待开发的方法可能被视为弥合这些旧思想与我们面临的新挑战之间的跨学科差距;和主要研究人员都有开发跨学科课程、暑期学校、与拟议工作主题相关的研讨会的历史,他们将继续这样做。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Mahoney其他文献

Maturation of cerebellar climbing fiber and Purkinje cell population activities during postnatal development
出生后发育过程中小脑攀爬纤维的成熟和浦肯野细胞群活动
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Mahoney;Jean-Marc Good;Taisuke Miyazaki;Kenji F Tanaka;Kenji Sakimura;Masahiko Watanabe;Kazuo Kitamura;Masanobu Kano
  • 通讯作者:
    Masanobu Kano
Fetal gender and maternal serum screening markers
胎儿性别和母体血清筛查标志物
  • DOI:
    10.1097/01.gim.0000241913.25761.d2
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    J. Santolaya;Michael Mahoney;Mazen Abdallah;J. Duncan;Alberto Delgado;P. Stang;J. Deleon;V. Castracane
  • 通讯作者:
    V. Castracane

Michael Mahoney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Mahoney', 18)}}的其他基金

RI: Medium: Scalable Second-order Methods for Training, Designing, and Deploying Machine Learning Models
RI:中:用于训练、设计和部署机器学习模型的可扩展二阶方法
  • 批准号:
    2107000
  • 财政年份:
    2021
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Basic ALgebra LIbraries for Sustainable Technology with Interdisciplinary Collaboration (BALLISTIC)
协作研究:框架:跨学科协作可持续技术的基本代数库(BALLISTIC)
  • 批准号:
    2004235
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
III: Small: Combining Stochastics and Numerics for Improved Scalable Matrix Computations
III:小型:结合随机变量和数值以改进可扩展矩阵计算
  • 批准号:
    1815054
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Randomization as a Resource for Rapid Prototyping
FRG:协作研究:随机化作为快速原型制作的资源
  • 批准号:
    1760316
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Theory and Practice of Randomized Algorithms for Ultra-Large-Scale Signal Processing
BIGDATA:F:协作研究:超大规模信号处理随机算法的理论与实践
  • 批准号:
    1838131
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
TRIPODS: Berkeley Institute on the Foundations of Data Analysis
TRIPODS:伯克利数据分析基础研究所
  • 批准号:
    1740855
  • 财政年份:
    2017
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
BSF: 2014324: Streaming Algorithms for Fundamental Computations in Numerical Linear Algebra
BSF:2014324:数值线性代数中基本计算的流算法
  • 批准号:
    1540657
  • 财政年份:
    2015
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
III: Small: Characterizing and exploiting tree-like structure in large social and information networks
III:小型:描述和利用大型社交和信息网络中的树状结构
  • 批准号:
    1423621
  • 财政年份:
    2014
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1447534
  • 财政年份:
    2014
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
SGER: Microwave Temperature Profiler (MTP) Support for HIAPER Pole-to-Pole Observations (HIPPO)
SGER:微波温度分析仪 (MTP) 支持 HIAPER 极对极观测 (HIPPO)
  • 批准号:
    0910920
  • 财政年份:
    2009
  • 资助金额:
    $ 70万
  • 项目类别:
    Interagency Agreement

相似国自然基金

基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可扩展功能单元的液晶软驱动机械超材料研究
  • 批准号:
    52373173
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMT采样增强的符号执行可扩展性关键技术研究
  • 批准号:
    62372162
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了