Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain​

协作研究:深度学习的基础:理论、稳健性和大脑 —

基本信息

  • 批准号:
    2134108
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

A truly comprehensive theory of machine learning has the potential of informing science and engineering in the same profound way Maxwell’s equations did. It was the development of that theory by Maxwell that truly unleashed the potential of electricity, leading to radio, radars, computers, and the Internet. In an analogy, deep learning (DL) has found over the past decade many applications, so far without a comprehensive theory. An eventual theory of learning that explains why and how deep networks work and what their limitations are may thus enable the development of even more powerful learning approaches – especially if the goal of reconnecting DL to brain research bears fruit. In the long term, the ability to develop and build better intelligent machines will be essential to any technology-based economy. After all, even in its current – still highly imperfect – state, DL is impacting or about to impact just about every aspect of our society and life. The investigators also plan to complement their theoretical research with the educational goal of training a diverse population of young researchers from mathematics, computer science, statistics, electrical engineering, and computational neuroscience in the field of machine learning and of its theoretical underpinnings.The investigators propose to join forces in a multi-pronged and collaborative assault on the profound mysteries of DL, informed by the sum of their experience, expertise, ideas, and insight. The research goals are threefold: to develop a sound foundational/mathematical understanding of DL; in doing so to advance the foundational understanding of learning more generally; and to advance the practice of DL by addressing its above-mentioned weaknesses. Of six foundational thrusts, the first two focus on the standard decomposition of the prediction error in approximation and sample (or estimation) error. Their goal is to extend classical results in approximation theory and theory of learnability to DL. These two are then supported by a research project that is specific to deep learning: analysis of the dynamics of gradient descent in training a network. The fourth theme is about robustness against adversaries and shifts, a powerful test for theories which is also important for practical deployment of learning systems. The fifth thrust is about developing the theory of control through DL, as well as exploring dynamical systems aspects of deep reinforcement learning. The final topic connects research on DL to its origins - and possibly its future: networks of neurons in the brain. The proposed research also promises to advance the foundations of learning theory. Success in this project will result in sharper mathematical techniques for machine learning and comprehensive foundations of machine learning robustness, broadly construed. It will also ultimately enable development of learning algorithms that transcend deep learning and guide the way towards creating more intelligent machines, and shed new light on our own intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
真正全面的机器学习理论具有以与麦克斯韦方程相同的深刻方式为科学和工程提供信息的潜力。麦克斯韦对该理论的发展真正释放了电力的潜力,导致了无线电、雷达、计算机和电力的发展。打个比方,深度学习(DL)在过去十年中已经有了许多应用,但迄今为止还没有一个全面的理论来解释深度网络为何、如何工作以及它们的局限性。开发更强大的学习方法 –尤其是如果将深度学习与高度大脑研究重新联系起来的目标从长远来看,开发和建造更好的智能机器的能力对于任何基于技术的经济都至关重要,即使在目前仍然不完善。 – 状态,DL 正在影响或即将影响我们社会和生活的几乎各个方面,研究人员还计划通过培训数学、计算机科学、统计学、电气等领域的不同年轻研究人员的教育目标来补充他们的理论研究。机器学习及其领域的工程和计算神经科学研究人员建议结合他们的经验、专业知识、想法和洞察力,联合起来对深度学习的奥秘进行多管齐下的协作攻击。研究目标有三个:建立健全的基础。 /对深度学习的数学理解;这样做是为了更普遍地促进对学习的基本理解;并通过解决深度学习的上述弱点,其中前两个重点是标准。他们的目标是将近似理论和可学习性理论的经典结果扩展到深度学习,然后由一个特定于深度学习的研究项目支持:分析。第四个主题是关于对抗对手和变化的鲁棒性,这是对理论的有力检验,这对于学习系统的实际部署也很重要。第五个主题是关于通过深度学习发展控制理论。还有最后一个主题将深度强化学习的研究与它的起源联系起来——可能还有它的未来:大脑中的神经元网络。这项研究也有望为该项目的成功奠定基础。将为机器学习带来更敏锐的数学技术和机器学习鲁棒性的全面基础,从广义上讲,它还将最终实现超越深度学习的学习算法的开发,并指导创建更智能的机器的道路,并为我们自己带来新的启示。这个奖项体现了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STay-ON-the-Ridge: Guaranteed Convergence to Local Minimax Equilibrium in Nonconvex-Nonconcave Games
  • DOI:
    10.48550/arxiv.2210.09769
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Daskalakis;Noah Golowich;Stratis Skoulakis;Manolis Zampetakis
  • 通讯作者:
    C. Daskalakis;Noah Golowich;Stratis Skoulakis;Manolis Zampetakis
The Complexity of Markov Equilibrium in Stochastic Games
随机博弈中马尔可夫均衡的复杂性
The Complexity of Markov Equilibrium in Stochastic Games.
随机博弈中马尔可夫均衡的复杂性。
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Derek Lim;Joshua Robinson;Lingxiao Zhao;T. Smidt;S. Sra;Haggai Maron;S. Jegelka
  • 通讯作者:
    Derek Lim;Joshua Robinson;Lingxiao Zhao;T. Smidt;S. Sra;Haggai Maron;S. Jegelka
Online Learning and Solving Infinite Games with an ERM Oracle.
使用 ERM Oracle 在线学习和解决无限游戏。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomaso Poggio其他文献

Statistical Learning : CV loo stability is sufficient for generalization and necessary and sufficient for consistency of Empirical Risk Minimization
统计学习:CV loo 稳定性足以进行泛化,并且对于经验风险最小化的一致性也是必要和充分的
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sayan Mukherjee;P. Niyogi;Tomaso Poggio;R. Rifkin
  • 通讯作者:
    R. Rifkin
Statistical Learning : LOO stability is sufficient for generalization and necessary and sufficient for consistency of Empirical Risk Minimization
统计学习:LOO 稳定性足以进行泛化,并且对于经验风险最小化的一致性来说是必要和充分的
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sayan Mukherjee;P. Niyogi;Tomaso Poggio;R. Rifkin
  • 通讯作者:
    R. Rifkin
Wiener-like system identification in physiology
生理学中的类维纳系统识别
MIT Open Access Articles Attention as a Bayesian inference process
麻省理工学院开放获取文章注意力作为贝叶斯推理过程
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Chikkerur;Thomas Serre;Cheston Tan;Tomaso Poggio
  • 通讯作者:
    Tomaso Poggio
Comparison of alfaxalone and propofol administered for total intravenous anaesthesia during ovariohysterectomy in dogs
阿法沙酮与丙泊酚在犬卵巢子宫切除术中全凭静脉麻醉的比较
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomaso Poggio;M. Fraser
  • 通讯作者:
    M. Fraser

Tomaso Poggio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomaso Poggio', 18)}}的其他基金

A Center for Brains, Minds and Machines: the Science and the Technology of Intelligence
大脑、思想和机器中心:智能科学与技术
  • 批准号:
    1231216
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Cooperative Agreement
Collaborative Proposal: Object and Action Recognition in Time Sequences of Images: Computational Neuroscience and Neurophysiology
协作提案:图像时间序列中的对象和动作识别:计算神经科学和神经生理学
  • 批准号:
    0827483
  • 财政年份:
    2008
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Computational Models and Physiological Studies of Feedback in Visual Object Recognition Tasks
视觉对象识别任务中反馈的计算模型和生理学研究
  • 批准号:
    0640097
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CRCNS: Detection and Recognition of Objects in Visual Cortex
合作研究:CRCNS:视觉皮层中物体的检测和识别
  • 批准号:
    0218693
  • 财政年份:
    2002
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
ITR: From Bits to Information: Statistical Learning Technologies for Digital Information Management and Search
ITR:从比特到信息:数字信息管理和搜索的统计学习技术
  • 批准号:
    0085836
  • 财政年份:
    2000
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
KDI: Learning of Objects and Object Classes in Visual Cortex
KDI:视觉皮层中对象和对象类的学习
  • 批准号:
    9872936
  • 财政年份:
    1998
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Adaptive Man-Machine Interfaces
自适应人机界面
  • 批准号:
    9800032
  • 财政年份:
    1998
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CISE Postdoctoral Program: Complexity of Learning with Applications to Natural Language
CISE博士后项目:学习的复杂性及其在自然语言中的应用
  • 批准号:
    9504054
  • 财政年份:
    1995
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Single Chip Supercomputers
单片超级计算机
  • 批准号:
    9109509
  • 财政年份:
    1991
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Motion Analysis in Biological and Computer Vision Systems
生物和计算机视觉系统中的运动分析
  • 批准号:
    8719394
  • 财政年份:
    1988
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

个体创业导向在数字化公司创业中的展现与效应研究:基于注意力基础观
  • 批准号:
    72302074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全氢熔融还原铁氧化物基础研究
  • 批准号:
    52374319
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
硫酸盐侵蚀作用下混凝土损伤演化基础理论研究
  • 批准号:
    52378228
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于TRPV1-PPARs-SCD1-GLUTs介导糖脂代谢转运通路调控的地黄治疗糖尿病机制与药效物质基础研究
  • 批准号:
    82374133
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
磷酸(锰)铁锂/碳包覆层/电解液界面电化学基础研究
  • 批准号:
    22302203
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2405548
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了