Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain
协作研究:深度学习的基础:理论、稳健性和大脑 —
基本信息
- 批准号:2134108
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A truly comprehensive theory of machine learning has the potential of informing science and engineering in the same profound way Maxwell’s equations did. It was the development of that theory by Maxwell that truly unleashed the potential of electricity, leading to radio, radars, computers, and the Internet. In an analogy, deep learning (DL) has found over the past decade many applications, so far without a comprehensive theory. An eventual theory of learning that explains why and how deep networks work and what their limitations are may thus enable the development of even more powerful learning approaches – especially if the goal of reconnecting DL to brain research bears fruit. In the long term, the ability to develop and build better intelligent machines will be essential to any technology-based economy. After all, even in its current – still highly imperfect – state, DL is impacting or about to impact just about every aspect of our society and life. The investigators also plan to complement their theoretical research with the educational goal of training a diverse population of young researchers from mathematics, computer science, statistics, electrical engineering, and computational neuroscience in the field of machine learning and of its theoretical underpinnings.The investigators propose to join forces in a multi-pronged and collaborative assault on the profound mysteries of DL, informed by the sum of their experience, expertise, ideas, and insight. The research goals are threefold: to develop a sound foundational/mathematical understanding of DL; in doing so to advance the foundational understanding of learning more generally; and to advance the practice of DL by addressing its above-mentioned weaknesses. Of six foundational thrusts, the first two focus on the standard decomposition of the prediction error in approximation and sample (or estimation) error. Their goal is to extend classical results in approximation theory and theory of learnability to DL. These two are then supported by a research project that is specific to deep learning: analysis of the dynamics of gradient descent in training a network. The fourth theme is about robustness against adversaries and shifts, a powerful test for theories which is also important for practical deployment of learning systems. The fifth thrust is about developing the theory of control through DL, as well as exploring dynamical systems aspects of deep reinforcement learning. The final topic connects research on DL to its origins - and possibly its future: networks of neurons in the brain. The proposed research also promises to advance the foundations of learning theory. Success in this project will result in sharper mathematical techniques for machine learning and comprehensive foundations of machine learning robustness, broadly construed. It will also ultimately enable development of learning algorithms that transcend deep learning and guide the way towards creating more intelligent machines, and shed new light on our own intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一种真正的机器学习理论具有与麦克斯韦方程相同的方式来告知科学和工程的潜力。正是麦克斯韦(Maxwell)的这一理论的发展确实释放了电力的潜力,导致无线电,雷达,计算机和互联网。在类比中,深度学习(DL)在过去十年中发现了许多应用程序,到目前为止没有全面的理论。一个学习的事件理论解释了为什么深层网络的工作以及它们的局限性可能会导致更强大的学习方法的发展,尤其是在将DL重新连接到大脑研究的目标时。从长远来看,开发和建造更好的智能机器的能力对于任何基于技术的经济都是必不可少的。毕竟,即使在目前的状态(仍然是高度不完美的状态)中,DL也在影响或即将影响我们社会和生活的各个方面。研究人员还计划以教育目标来完成其理论研究,即培训来自数学,计算机科学,统计,电气工程和计算神经科学领域的年轻研究人员的多样性人群,并在机器学习及其理论基础的领域中进行了计算神经科学。调查人员提议联合起来,对DL的深刻谜团进行多管齐全和合作的攻击,这是由于他们的经验,专业知识,思想和见识的总和。是三重的:开发对DL的基础/数学理解;这样做以提高对学习的基础理解;并通过解决其上述弱点来推进DL的实践。在六个基础推力中,前两个重点是近似和样本(或估计)误差中预测误差的标准分解。他们的目标是将学习理论和学习理论扩展到DL。然后,这两个由特定于深度学习的研究项目支持:分析训练网络中梯度下降的动态。第四个主题是针对对手和转移的鲁棒性,这是对理论的有力测试,这对于学习系统的实际部署也很重要。第五个推力是通过DL发展控制理论,并探讨了深度强化学习的动态系统方面。最后一个主题将对DL的研究与其起源联系起来,并可能未来:大脑中神经元网络。拟议的研究还有望推进学习理论的基础。该项目的成功将为机器学习和机器学习鲁棒性的全面基础提供更清晰的数学技术。它还将最终能够开发学习算法,这些算法超越深度学习并指导创建更聪明的机器,并为我们自己的智能提供新的启示。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得的支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STay-ON-the-Ridge: Guaranteed Convergence to Local Minimax Equilibrium in Nonconvex-Nonconcave Games
- DOI:10.48550/arxiv.2210.09769
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:C. Daskalakis;Noah Golowich;Stratis Skoulakis;Manolis Zampetakis
- 通讯作者:C. Daskalakis;Noah Golowich;Stratis Skoulakis;Manolis Zampetakis
The Complexity of Markov Equilibrium in Stochastic Games
随机博弈中马尔可夫均衡的复杂性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Constantinos Daskalakis;Noah Golowich;Kaiqing Zhang
- 通讯作者:Kaiqing Zhang
The Complexity of Markov Equilibrium in Stochastic Games.
随机博弈中马尔可夫均衡的复杂性。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Constantinos Daskalakis;Noah Golowich;Kaiqing Zhang
- 通讯作者:Kaiqing Zhang
Online Learning and Solving Infinite Games with an ERM Oracle.
使用 ERM Oracle 在线学习和解决无限游戏。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Angelos Assos;Idan Attias;Yuval Dagan;Constantinos Daskalakis;Maxwell Fishelson
- 通讯作者:Maxwell Fishelson
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Derek Lim;Joshua Robinson;Lingxiao Zhao;T. Smidt;S. Sra;Haggai Maron;S. Jegelka
- 通讯作者:Derek Lim;Joshua Robinson;Lingxiao Zhao;T. Smidt;S. Sra;Haggai Maron;S. Jegelka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tomaso Poggio其他文献
Statistical Learning : CV loo stability is sufficient for generalization and necessary and sufficient for consistency of Empirical Risk Minimization
统计学习:CV loo 稳定性足以进行泛化,并且对于经验风险最小化的一致性也是必要和充分的
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Sayan Mukherjee;P. Niyogi;Tomaso Poggio;R. Rifkin - 通讯作者:
R. Rifkin
Statistical Learning : LOO stability is sufficient for generalization and necessary and sufficient for consistency of Empirical Risk Minimization
统计学习:LOO 稳定性足以进行泛化,并且对于经验风险最小化的一致性来说是必要和充分的
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Sayan Mukherjee;P. Niyogi;Tomaso Poggio;R. Rifkin - 通讯作者:
R. Rifkin
Wiener-like system identification in physiology
生理学中的类维纳系统识别
- DOI:
- 发表时间:
1977 - 期刊:
- 影响因子:1.9
- 作者:
Günther Palm;Tomaso Poggio - 通讯作者:
Tomaso Poggio
MIT Open Access Articles Attention as a Bayesian inference process
麻省理工学院开放获取文章注意力作为贝叶斯推理过程
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
S. Chikkerur;Thomas Serre;Cheston Tan;Tomaso Poggio - 通讯作者:
Tomaso Poggio
Comparison of alfaxalone and propofol administered for total intravenous anaesthesia during ovariohysterectomy in dogs
阿法沙酮与丙泊酚在犬卵巢子宫切除术中全凭静脉麻醉的比较
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Tomaso Poggio;M. Fraser - 通讯作者:
M. Fraser
Tomaso Poggio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tomaso Poggio', 18)}}的其他基金
A Center for Brains, Minds and Machines: the Science and the Technology of Intelligence
大脑、思想和机器中心:智能科学与技术
- 批准号:
1231216 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Cooperative Agreement
Collaborative Proposal: Object and Action Recognition in Time Sequences of Images: Computational Neuroscience and Neurophysiology
协作提案:图像时间序列中的对象和动作识别:计算神经科学和神经生理学
- 批准号:
0827483 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Computational Models and Physiological Studies of Feedback in Visual Object Recognition Tasks
视觉对象识别任务中反馈的计算模型和生理学研究
- 批准号:
0640097 - 财政年份:2007
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: CRCNS: Detection and Recognition of Objects in Visual Cortex
合作研究:CRCNS:视觉皮层中物体的检测和识别
- 批准号:
0218693 - 财政年份:2002
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
ITR: From Bits to Information: Statistical Learning Technologies for Digital Information Management and Search
ITR:从比特到信息:数字信息管理和搜索的统计学习技术
- 批准号:
0085836 - 财政年份:2000
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
KDI: Learning of Objects and Object Classes in Visual Cortex
KDI:视觉皮层中对象和对象类的学习
- 批准号:
9872936 - 财政年份:1998
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CISE Postdoctoral Program: Complexity of Learning with Applications to Natural Language
CISE博士后项目:学习的复杂性及其在自然语言中的应用
- 批准号:
9504054 - 财政年份:1995
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Motion Analysis in Biological and Computer Vision Systems
生物和计算机视觉系统中的运动分析
- 批准号:
8719394 - 财政年份:1988
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
开放式空间刚-柔智能群体机器人基础理论与关键技术研究
- 批准号:91848205
- 批准年份:2018
- 资助金额:280.0 万元
- 项目类别:重大研究计划
面向大范围科考的人-跨域机器人智能协同基础理论和试验研究
- 批准号:91748130
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:重大研究计划
人机协作型移动双臂机器人的基础研究
- 批准号:91648201
- 批准年份:2016
- 资助金额:300.0 万元
- 项目类别:重大研究计划
人机协作型新一代工业机器人基础研究
- 批准号:U1508208
- 批准年份:2015
- 资助金额:246.0 万元
- 项目类别:联合基金项目
实用非相干能量收集中继系统基础理论与算法研究
- 批准号:61501304
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402852 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
- 批准号:
2405548 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant