AF : Small : Fast algorithms for LPs, TSP, and Connectivity
AF:小型:LP、TSP 和连接的快速算法
基本信息
- 批准号:2129816
- 负责人:
- 金额:$ 49.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of theoretical algorithms has long emphasized the difference between polynomial and exponential running times, which has formed a sound theoretical basis for computation as a science and has also been robust to many technological advancements. Recent computing trends, featuring copious amounts of data as well as the end of Moore’s law, puts greater emphasis on extremely scalable algorithms such as those with nearly linear running times. This project addresses these modern challenges by developing faster algorithms for a selection of fundamental problems in combinatorial optimization, building towards a broad algorithmic foundation of scalable algorithms. This project augments theoretical algorithms research with efforts to develop implementations and expand applications, in part through the Computational Science and Engineering group at Purdue among other avenues. This project will support two or more PhD students and the investigator will organize activities to promote research in fast algorithms, with particular effort to recruit and train students from underrepresented minorities. The investigator will integrate modern and advanced algorithmic techniques informed by the research initiatives of this project into the curriculum at Purdue both at the undergraduate and graduate level.This project encompasses a family of interrelated problems that investigate the rich and timely interplay of (a) linear programs and continuous optimization, (b) graph structure and algorithms, (c) randomization, and (d) data structures. They are grouped into the following verticals. The first group, on accelerating positive linear programs, focuses on reducing the running-time dependence on the relative-error parameter for a variety of linear programs useful in combinatorial optimization. The second group of problems, on fast approximations for the traveling salesman problem (TSP), seeks to develop linear-time approximations for variations of TSP as well as related problems of independent interest. The third and final group of problems develops fast approximation algorithms for connectivity, including problems for both undirected and directed graphs. There are rich theoretical connections across these problems that this project leverages and further develops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理论算法的领域长期以来一直强调多项式运行时间和指数运行时间之间的差异,这已经形成了计算作为一门科学的合理理论基础,并且对许多技术进步也很强大。最近的计算趋势以大量数据以及摩尔定律的终结为特征,更加重视极其可扩展的算法,例如具有几乎线性运行时间的算法。该项目通过开发更快的算法来解决这些现代挑战,以选择组合优化的基本问题,从而建立了可扩展算法的广泛算法基础。该项目通过努力开发实施和扩展应用程序,部分通过普渡大学的计算科学和工程组以及其他途径来扩展理论算法研究。该项目将支持两名或多个博士学位学生,调查员将组织活动,以促进快速算法的研究,并特别努力招募和培训来自代表性不足的少数群体的学生。研究者将整合该项目的研究计划所告知的现代和先进的算法技术,包括本科和研究生级的普渡大学的课程。该项目涵盖了一个相互关联的问题,这些问题涵盖了一个相互关联的问题,这些问题涵盖了(a)线性程序和持续优化的图形结构和(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(c)(c)(c)(c)。它们分为以下垂直行业。第一组在加速度正线性程序上,重点是减少对各种线性程序的相对误差参数的运行时依赖性,可用于组合优化。第二组问题是关于旅行推销员问题(TSP)的快速近似,试图开发TSP变化以及相关的独立兴趣问题的线性时间近似。第三组也是最后一组问题为连接性开发了快速的近似算法,包括无向图和有向图的问题。在这些项目中,该项目利用并进一步发展存在丰富的理论联系。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估被认为是宝贵的支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Faster and Scalable Algorithms for Densest Subgraph and Decomposition
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Elfarouk Harb;Kent Quanrud;C. Chekuri
- 通讯作者:Elfarouk Harb;Kent Quanrud;C. Chekuri
Faster exact and approximation algorithms for packing and covering matroids via push-relabel
通过推送重新标签来打包和覆盖拟阵的更快的精确和近似算法
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Quanrud, Kent
- 通讯作者:Quanrud, Kent
Faster Algorithms for Rooted Connectivity in Directed Graphs
有向图中有根连接的更快算法
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chekuri, Chandra;Quanrud, Kent
- 通讯作者:Quanrud, Kent
Minimum Cuts in Directed Graphs via Partial Sparsification
通过部分稀疏化有向图的最小割
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Cen, Ruoxu;Li, Jason;Nanongkai, Danupon;Panigrahi, Debmalya;Saranurak, Thatchaphol;Quanrud, Kent
- 通讯作者:Quanrud, Kent
Independent Sets in Elimination Graphs with a Submodular Objective
- DOI:10.48550/arxiv.2307.02022
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:C. Chekuri;Kent Quanrud
- 通讯作者:C. Chekuri;Kent Quanrud
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kent Quanrud其他文献
Approximating optimal transport with linear programs
用线性程序逼近最佳传输
- DOI:
10.4230/oasics.sosa.2019.6 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kent Quanrud - 通讯作者:
Kent Quanrud
Fast and Deterministic Approximations for k-Cut
- DOI:
10.4230/lipics.approx-random.2019.23 - 发表时间:
2018-07 - 期刊:
- 影响因子:0
- 作者:
Kent Quanrud - 通讯作者:
Kent Quanrud
Nearly linear time approximations for mixed packing and covering problems without data structures or randomization
混合包装和覆盖问题的近线性时间近似,无需数据结构或随机化
- DOI:
10.1137/1.9781611976014.11 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Kent Quanrud - 通讯作者:
Kent Quanrud
A Fast Approximation for Maximum Weight Matroid Intersection
最大权重拟阵交集的快速逼近
- DOI:
10.1137/1.9781611974331.ch33 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
C. Chekuri;Kent Quanrud - 通讯作者:
Kent Quanrud
Spectral Sparsification of Metrics and Kernels
度量和内核的谱稀疏化
- DOI:
10.1137/1.9781611976465.87 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Kent Quanrud - 通讯作者:
Kent Quanrud
Kent Quanrud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
- 批准号:82373728
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
APOE调控小胶质细胞脂代谢模式在ASD认知和社交损伤中的作用及机制研究
- 批准号:82373597
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小胶质细胞外泌体通过miR-486抑制神经元铁死亡介导电针修复脊髓损伤的机制研究
- 批准号:82360454
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
CUL4B正反馈调控FOXO3a-FOXM1通路促进非小细胞肺癌放疗抵抗的机制研究
- 批准号:82360584
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
葡萄糖饥饿条件下AMPK-CREB-PPA1信号通路促进非小细胞肺癌细胞增殖的分子机制研究
- 批准号:82360518
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
AF:Small: Algorithms for Fast Simulation of Macromolecular Interaction Systems
AF:Small:大分子相互作用系统快速模拟算法
- 批准号:
1816314 - 财政年份:2018
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
AF: Small: Fast and accurate computational tools for large-scale evolutionary inference: a phylogenetic network approach
AF:小型:用于大规模进化推理的快速准确的计算工具:系统发育网络方法
- 批准号:
1714417 - 财政年份:2017
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Mathematical Theory and Fast Algorithms for Rayleigh Quotient-type Optimizations
AF:小型:协作研究:瑞利商型优化的数学理论和快速算法
- 批准号:
1527091 - 财政年份:2015
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Mathematical Theory and Fast Algorithms for Rayleigh Quotient-type Optimizations
AF:小型:协作研究:瑞利商型优化的数学理论和快速算法
- 批准号:
1527104 - 财政年份:2015
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
"AF:Small:Efficient and reliable low-rank approximation techniques and fast solutions to large sparse linear equations"
“AF:Small:高效可靠的低秩逼近技术和大型稀疏线性方程的快速解”
- 批准号:
1319312 - 财政年份:2013
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant