CSR: Small: Collaborative Research: Decentralized Real-Time Machine Learning Systems on Near-User Edge Devices
CSR:小型:协作研究:近用户边缘设备上的分散式实时机器学习系统
基本信息
- 批准号:2104416
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ever-increasing number of Internet of Things (IoT) devices generate large quantities of raw data that need to be processed and analyzed in real time. Since conducting computationally expensive tasks, such as computer vision and natural language processing, is often a challenge for IoT devices, most of their computations are currently offloaded to cloud servers. However, this offloading leads to an increased risk for privacy as well as a dependency on network connectivity. To solve this challenge, the project utilizes the distributed computing power of already connected IoT devices to perform high computing power applications in real time.The project is composed of three tasks. First is the development of distributed machine learning (ML) systems for multiple IoT devices. The project will involve studying how to communicate between nodes with reliable connections and how to dynamically change the job of each node at run-time with little overhead. Second is the development of optimal task assignment and scheduling algorithms. Here, a machine learning approach will be used to generate a recognition model architecture optimal for each distributed system configuration. Third is the development of low-resolution deep neural network (DNN) systems to utilize low-power computing nodes. The development of these DNN systems will involve identifying multiple low-resolution filters that are optimal for varying configurations.The proposed technical work will advance the state of the art in implementation of parallel and decentralized DNN systems, thereby benefiting all scientific fields of endeavor that rely on computing. The decentralized DNN system will offer new opportunities in power constrained mobile platforms for applications including surveillance and automotive. The research results will lead to new materials/courses for computer architecture and systems. The proposed infrastructure will also be used to guide undergraduate students' research activities. The software infrastructure will be maintained as an open source project, which can be found at https://github.com/parallel-ml. It will be updated periodically as new outcomes become available. The results will be published in conferences, journals and technical reports.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网 (IoT) 设备数量不断增加,产生大量需要实时处理和分析的原始数据。 由于执行计算机视觉和自然语言处理等计算量大的任务通常对物联网设备来说是一个挑战,因此它们的大部分计算目前都被卸载到云服务器上。然而,这种卸载会导致隐私风险增加以及对网络连接的依赖。为了解决这一挑战,该项目利用已连接的物联网设备的分布式计算能力来实时执行高计算能力应用。该项目由三个任务组成。首先是为多个物联网设备开发分布式机器学习(ML)系统。 该项目将涉及研究如何在具有可靠连接的节点之间进行通信,以及如何在运行时以很少的开销动态改变每个节点的工作。其次是开发最优任务分配和调度算法。在这里,将使用机器学习方法来生成最适合每个分布式系统配置的识别模型架构。第三是开发低分辨率深度神经网络(DNN)系统以利用低功耗计算节点。这些 DNN 系统的开发将涉及识别最适合不同配置的多个低分辨率滤波器。所提出的技术工作将推进并行和分散 DNN 系统实施的最先进技术,从而使所有依赖于这些系统的科学领域受益关于计算。分散式 DNN 系统将为监控和汽车等应用的功率受限移动平台提供新的机会。研究成果将带来计算机体系结构和系统的新材料/课程。拟议的基础设施还将用于指导本科生的研究活动。软件基础设施将作为开源项目进行维护,可以在 https://github.com/parallel-ml 上找到。 随着新结果的出现,它将定期更新。结果将在会议、期刊和技术报告中发表。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Does Self-supervised Learning Really Improve Reinforcement Learning from Pixels?
自监督学习真的能改善像素强化学习吗?
- DOI:
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Li, Xiang;Shang, Jinghuan;Das, Srijan;Ryoo, Michael S.
- 通讯作者:Ryoo, Michael S.
AViD Dataset: Anonymized Videos from Diverse Countries
AViD 数据集:来自不同国家的匿名视频
- DOI:
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Piergiovanni, AJ;Ryoo, Michael S
- 通讯作者:Ryoo, Michael S
Neural Neural Textures Make Sim2Real Consistent
神经网络纹理使 Sim2Real 保持一致
- DOI:
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Burgert, Ryan;Shang, Jinghuan;Li, Xiang;Ryoo, Michael S.
- 通讯作者:Ryoo, Michael S.
Coarse-Fine Networks for Temporal Activity Detection in Videos
用于视频中时间活动检测的粗细网络
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Kumara, Kahatapitiya;Ryoo, Michael S
- 通讯作者:Ryoo, Michael S
Learning Viewpoint-Agnostic Visual Representations by Recovering Tokens in 3D Space
通过恢复 3D 空间中的标记来学习与视点无关的视觉表示
- DOI:
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Shang, Jinghuan;Das, Srijan;Ryoo, Michael S.
- 通讯作者:Ryoo, Michael S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ryoo其他文献
SARA-RT: Scaling up Robotics Transformers with Self-Adaptive Robust Attention
SARA-RT:通过自适应鲁棒注意力扩展机器人变压器
- DOI:
10.48550/arxiv.2312.01990 - 发表时间:
2023-12-04 - 期刊:
- 影响因子:0
- 作者:
Isabel Leal;Krzysztof Choromanski;Deepali Jain;Kumar Avinava Dubey;Jake Varley;Michael Ryoo;Yao Lu;Frederick Liu;Vikas Sindhwani;Q. Vuong;Tamás Sarlós;Kenneth Oslund;Karol Hausman;Kanishka Rao - 通讯作者:
Kanishka Rao
Michael Ryoo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ryoo', 18)}}的其他基金
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
- 批准号:
2104404 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
- 批准号:
2104404 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
- 批准号:
1812943 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Decentralized Real-Time Machine Learning Systems on Near-User Edge Devices
CSR:小型:协作研究:近用户边缘设备上的分散式实时机器学习系统
- 批准号:
1814985 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314680 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321225 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314681 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312158 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant