CRII: CIF: Automated and Robust Image Watermarking: A Deep Learning Approach

CRII:CIF:自动且鲁棒的图像水印:一种深度学习方法

基本信息

  • 批准号:
    2104267
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Digital image watermarking refers to the process of covertly embedding information into a cover-image and extracting it from it the marked-image; it is used in various application areas ranging from covert communication to authentication to security. Although many handcrafted watermarking schemes are available, these traditional methods run into difficulties due to the limited scope inherent to manual design. To implement image watermarking which adapts to the demands of increasingly diverse application scenarios, this project aims to develop novel schemes based on ideas from deep learning (DL). Two major problems will be addressed, namely (i) minimizing the requirement of domain knowledge, and (ii) achieving robustness without prior knowledge. Outcomes of this project will contribute to a new generation of robust and intelligent watermarking tools that can support cutting-edge applications such as camera scans and secured Internet-of-Things device on-boarding. The integration of the proposed research activities into university curriculum development and other educational programs will contribute to STEM education at various levels. This project seeks to advance the state-of-the-art in DL—based image watermarking through the development of image watermarking schemes that achieve a robust generalization of watermarking rules without requiring information about labeling, the original images, or distortions. The research agenda is structured around two complementary research activities: (i) DL—based automated image watermarking with similarity measures of distance functions, discriminator classifiers, or metric learning; and (ii) DL—based robust image watermarking that explores invariant image latent spaces and automatic rectification. The schemes to be developed will be tested on different applications to confirm their practicality. These research activities are expected to advance our understanding of watermarking on a number of fronts, namely (i) how to design deep learning components (such as architectures and layers) and novel algorithms (through similarity measures) to fully generalize image features and functions for image watermarking processes; (ii) how to design DL components to achieve robustness to different types of distortions in image watermarking, without requiring prior knowledge or adversarial examples; and (iii) how these designs can enable various novel watermarking application scenarios and use cases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数字图像水印是指将信息隐蔽地嵌入到封面图像中并从中提取标记图像的过程;它被用于从隐蔽通信到身份验证到安全的各种应用领域。由于手动设计固有的范围有限,这些传统方法遇到了困难,为了实现适应日益多样化的应用场景的需求,该项目旨在开发基于深度学习(DL)思想的新颖方案。问题将解决以下问题,即(i)最大限度地减少对领域知识的要求,以及(ii)在没有先验知识的情况下实现鲁棒性,该项目的成果将有助于开发新一代强大且智能的水印工具,这些工具可以支持尖端应用程序,例如。摄像头扫描和安全物联网设备接入将拟议的研究活动整合到大学课程开发和其他教育计划中,该项目旨在促进各个层面的 STEM 教育。基于深度学习的图像艺术通过开发图像水印方案来实现水印规则的稳健泛化,而不需要有关标签、原始图像或失真的信息。研究议程围绕两项互补的研究活动构建:(i)基于深度学习的自动图像水印。距离函数、判别器分类器或度量学习的相似性度量;以及(ii)基于深度学习的鲁棒图像水印,探索不变的图像潜在空间和自动校正。这些研究活动预计将增进我们对水印在多个方面的理解,即(i)如何设计深度学习组件(例如架构和层)和新颖的算法(通过相似性度量)来实现完全概括图像水印过程的图像特征和功能;(ii)如何设计深度学习组件以实现对图像水印中不同类型的失真的鲁棒性,而无需先验知识或对抗性示例;(iii)这些设计如何能够实现新颖的各种效果;水印应用场景和用例。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FOD-A: A Dataset for Foreign Object Debris in Airports
FOD-A:机场异物碎片数据集
  • DOI:
    10.1007/978-3-030-71454-3_7
  • 发表时间:
    2021-10-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Travis J. E. Munyer;Pei;Chenyu Huang;Xin Zhong
  • 通讯作者:
    Xin Zhong
An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks
一种基于深度神经网络的自动化鲁棒图像水印方案
  • DOI:
    10.1109/tmm.2020.3006415
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Zhong, Xin;Huang, Pei;Mastorakis, Spyridon;Shih, Frank Y.
  • 通讯作者:
    Shih, Frank Y.
A Deep Learning-based Audio-in-Image Watermarking Scheme
一种基于深度学习的图像音频水印方案
DLWIoT: Deep Learning-based Watermarking for Authorized IoT Onboarding
DLWIoT:基于深度学习的水印,用于授权物联网接入
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Zhong其他文献

Effect of TiAlCrNb buffer layer on thermal cycling behavior of YSZ/TiAlCrY coatings on γ-TiAl alloys
TiAlCrNb缓冲层对γ-TiAl合金YSZ/TiAlCrY涂层热循环行为的影响
  • DOI:
    10.1016/j.surfcoat.2021.128000
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yangyang Pan;B. Liang;Dun Hong;D. Han;Xin Zhong;Y. Niu;Xuebin Zheng
  • 通讯作者:
    Xuebin Zheng
TRIM25-mediated XRCC1 ubiquitination accelerates atherosclerosis by inducing macrophage M1 polarization and programmed death.
TRIM25 介导的 XRCC1 泛素化通过诱导巨噬细胞 M1 极化和程序性死亡来加速动脉粥样硬化。
Butyrate, but not Propionate, Reverses Maternal Diet-Induced Neurocognitive Deficits in Offspring.
丁酸盐而非丙酸盐可以逆转母亲饮食引起的后代神经认知缺陷。
  • DOI:
    10.1016/j.phrs.2020.105082
  • 发表时间:
    2020-07-14
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Linchao Yu;Xin Zhong;Yu He;Yuan Shi
  • 通讯作者:
    Yuan Shi
Deep Morphological Neural Networks
深度形态神经网络
O-Linked GlcNAc Modification of Cardiac Myofilament Proteins: A Novel Regulator of Myocardial Contractile Function
心肌肌丝蛋白的 O-连接 GlcNAc 修饰:心肌收缩功能的新型调节剂
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    20.1
  • 作者:
    G. Ramirez;Wenhai Jin;Zihao Wang;Xin Zhong;W. Gao;W. Dias;C. Vecoli;G. Hart;A. Murphy
  • 通讯作者:
    A. Murphy

Xin Zhong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
  • 批准号:
    2413622
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了