OuSense: Electronic-Photonic System-on-Chip for Real-time Endoscopic Ultrasound 3D Imaging
OuSense:用于实时内窥镜超声 3D 成像的电子光子片上系统
基本信息
- 批准号:2128402
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For decades, ultrasound imaging has been one of the most indispensable tools in numerous medical disciplines ranging from oncology to cardiology and from dermatology to ophthalmology because of its portability and ease of use. However, in endoscopic, intravascular and catheterized applications, i.e., inside the body imaging systems, which constitute a huge part of the Point-of-Care spectrum of applications, traditional ultrasonic imagers have demonstrated serious shortcomings in terms of power dissipation and being too large in size. A unique platform developed by the Principal Investigator's research team, which enables tight co-integration of high-performance photonic devices with fast sophisticated transistors will serve as the vehicle towards achieving the goal of personalized, portable diagnostic systems that can shine new light INTO human physiology. Such a system, with highly sensitive, micro-scale optical sensors in its core, can be ultra-low power and size, ensuring safe operation inside the human body without sacrificing key system attributes. These optical sensors can provide 3D imaging in real time and pave the way towards the realization of a first of its kind miniaturized optical ultrasonic reception probe. The photonic nature of this system will also enable the applications such as ultrasound photoacoustic imaging that can assist the diagnosis and treatment of a wide range of important diseases from breast cancer to cardiovascular. This framework, along with associated educational materials and experiences will help create a new crop of engineers who are capable of tackling the complex, multidisciplinary nature of biomedical imaging and sensing systems.The proposed research will develop first of its kind optical ultrasound probe with thousands of sensor elements, capable of real-time 3-D imaging with high power and area efficiency (target: 0.5W, 5mm3. Transduction of the ultrasonic signal in the optical domain will remote the power hungry receive electronics outside the probe tube, and consequently the human body. Thus, more power will be externally available to lower receiver noise, without contributing to probe heat-up. The micro-ring resonators that will be used as the main sensing element have been proven to mitigate the sensitivity-bandwidth tradeoff of their piezo and CMUT counterparts. Replacing electrical transducers will also greatly simplify packaging, eliminating most electrical connections and interfaces, relying on extremely compact optic fiber arrays instead of micro-coax cables to carry the ultrasonic modulation. Electronic-photonic co-design will result in ultra-efficient thermal tuning control circuitry placed on-chip, in close proximity to the optics. The result of this effort will be the first optical ultrasound reception system simultaneously interrogating multiple optical sensors. Dense packing of thousands of sensing elements enables targeting the emerging applications like photoacoustic imaging, which require high sensitivity, frequency and resolution. This work will investigate an all-optical multi-modal ultrasound imaging, combining traditional ultrasound with photoacoustics to generate high contrast images that can assist the diagnosis and treatment of a wide range of important diseases from breast cancer to cardiovascular.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几十年来,超声成像一直是从肿瘤学到心脏病学到从皮肤病学到眼科学的许多医学学科中最必不可少的工具之一,因为它具有可移植性和易用性。 然而,在内窥镜,血管内和反插入的应用中,即在人体成像系统内部,这是应用程序点范围的很大一部分,传统的超声图像器在功率耗散方面表现出严重的缺点,并且太大大小。 由首席研究员研究团队开发的独特平台,该平台可以通过快速复杂的晶体管将高性能光子设备的紧密整合起来,将作为实现个性化的便携式诊断系统的目标。 这样的系统具有高度敏感的微型光学传感器的核心,可以是超低的功率和大小,从而确保在不牺牲关键系统属性的情况下在人体内部进行安全操作。这些光学传感器可以实时提供3D成像,并为实现第一个小型化的光学超声接收探针铺平道路。该系统的光子性质还将实现诸如超声光声成像之类的应用,这些应用可以帮助诊断和治疗从乳腺癌到心血管的广泛重要疾病。该框架以及相关的教育材料和经验将有助于创建一系列新作物,这些工程师能够应对生物医学成像和传感系统的复杂,多学科的性质。拟议的研究将首先与数千次进行光学超声探针一起发展传感器元件,能够具有高功率和面积效率的实时3-D成像(目标:0.5W,5mm3。光学域中超声信号的转导将远程避免饥饿的电源在探测管外接收电子设备,因此,人体。因此,更多的功率将在降低接收器的噪音上,而无需探测将用作主要感应元素的微环谐振器。压电和CMUT替换电气换能器也将大大简化包装,消除大多数电气连接和界面,依靠极其紧凑的光纤阵列而不是微型肌轴线来携带超声模型。电子光谱共同设计将导致在片上放置超有效的热调节控制电路,与光学材料非常接近。这项工作的结果将是同时询问多个光学传感器的第一个光学超声接收系统。数千种传感元素的密集堆积可以针对新兴应用,例如光声成像,这些应用需要高灵敏度,频率和分辨率。这项工作将调查全光模式超声成像,将传统超声和光声学结合起来,产生高对比度图像,可以帮助诊断和治疗从乳腺癌到心血管的广泛重要疾病。这一奖项反映了NSF的法定任务并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fully Integrated Electronic-Photonic Ultrasound Receiver Array for Endoscopic Applications in a Zero-Change 45-nm CMOS-SOI Process
零变化 45 nm CMOS-SOI 工艺中用于内窥镜应用的全集成电子-光子超声接收器阵列
- DOI:10.1109/jssc.2022.3222829
- 发表时间:2023
- 期刊:
- 影响因子:5.4
- 作者:Zarkos, Panagiotis;Buchbinder, Sidney;Adamopoulos, Christos;Madhvapathy, Sarika;Hsu, Olivia;Whinnery, Jake;Bhargava, Pavan;Stojanović, Vladimir
- 通讯作者:Stojanović, Vladimir
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Stojanovic其他文献
Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming
- DOI:
10.3934/mmc.2023016 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Vladimir Stojanovic - 通讯作者:
Vladimir Stojanovic
Blood pressure cut-offs to diagnose impending hypertensive emergency depend on previous hypertension-mediated organ damage and comorbid conditions.
诊断即将发生的高血压急症的血压截止值取决于既往高血压介导的器官损伤和合并症。
- DOI:
10.25259/nmji_160_21 - 发表时间:
2024 - 期刊:
- 影响因子:0.4
- 作者:
Goran Koraćević;Milovan Stojanovic;D. Lovic;Tomislav Kostić;Miloje Tomasevic;S. S. Martinovic;S. C. Zdravkovic;M. Koraćević;Vladimir Stojanovic - 通讯作者:
Vladimir Stojanovic
Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems
二次曲线型非线性马尔可夫跳跃系统的有限时间异步耗散滤波
- DOI:
10.1007/s11432-020-2913-x - 发表时间:
2021-03 - 期刊:
- 影响因子:0
- 作者:
Xiang Zhang;Shuping He;Vladimir Stojanovic;Xiaoli Luan;Fei Liu - 通讯作者:
Fei Liu
Monolithic Integration of Silicon Quantum Photonics and Electronics in a 45nm SOI CMOS Foundry Platform
45nm SOI CMOS 代工平台中硅量子光子学和电子学的单片集成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Kramnik;I. Wang;J. Cabanillas;Anirudh Ramesh;Dorde Gluhovic;S. Buchbinder;P. Zarkos;C. Adamopoulos;Prem Kumar;Milos A. Popovic;Vladimir Stojanovic - 通讯作者:
Vladimir Stojanovic
A Novel Latch design for Low Power Applications
适用于低功耗应用的新型锁存器设计
- DOI:
10.5120/4907-7420 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Abhilasha K. G. Sharma;T. Sharma;B. P. Singh;Vladimir Stojanovic;andVojin G.Oklobdzija;C.;L.;K. - 通讯作者:
K.
Vladimir Stojanovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Stojanovic', 18)}}的其他基金
FuSe-TG: Electronic-Photonic Systems-on-Chip for Computation, Communication and Sensing
FuSe-TG:用于计算、通信和传感的电子光子片上系统
- 批准号:
2235466 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328945 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
- 批准号:
2023861 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
OP: Collaborative Research: Coherent Integrated Si-Photonic Links
OP:协作研究:相干集成硅光子链路
- 批准号:
1611296 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Energy-Efficient Compressed Sensing: A joint Algorithmic/Implementation Approach Using Deterministic Sensing
节能压缩传感:使用确定性传感的联合算法/实现方法
- 批准号:
1363447 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Energy-Efficient Compressed Sensing: A joint Algorithmic/Implementation Approach Using Deterministic Sensing
节能压缩传感:使用确定性传感的联合算法/实现方法
- 批准号:
1128226 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Energy-efficient communication with optimized ECC decoders: Connecting Algorithms and Implementations
协作研究:使用优化的 ECC 解码器进行节能通信:连接算法和实现
- 批准号:
0725555 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
叠层二维狄拉克电子体系中的等离激元光子学
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
范德华氧化钼双轴双曲声子极化激元的中红外光场局域调控及纳米聚焦应用研究
- 批准号:11904420
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于光与物质强耦合条件下的非辐射能量转移特性的研究
- 批准号:11804018
- 批准年份:2018
- 资助金额:29.0 万元
- 项目类别:青年科学基金项目
表面等离激元增强手性的研究及其在手性传感中的应用
- 批准号:11704058
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:青年科学基金项目
紫外波段铝表面等离激元的阴极荧光光谱研究
- 批准号:11774185
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
SPIKEPro - SPIKING PHOTONIC-ELECTRONIC IC FOR QUICK AND EFFICIENT PROCESSING
SPIKEPro - 用于快速高效处理的 SPIKING 光子电子 IC
- 批准号:
10098316 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
MRes in Connected Electronic and Photonic Systems (CEPS)
互联电子与光子系统研究硕士(CEPS)
- 批准号:
2894752 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
MRes year on the CDT in Connected Electronic and Photonic Systems
互联电子和光子系统 CDT 硕士研究年
- 批准号:
2867316 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
CDT in Connected Electronic and Photonic Systems
连接电子和光子系统中的 CDT
- 批准号:
2867312 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
MRes year on the CDT in Connected Electronic and Photonic Systems
互联电子和光子系统 CDT 硕士研究年
- 批准号:
2867433 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship