CRII: CNS: Towards Robust RAN Slicing: Theories, Algorithms, and Applications
CRII:CNS:迈向稳健的 RAN 切片:理论、算法和应用
基本信息
- 批准号:2103405
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the rapid growth of new services and Internet applications, traditional cellular networks are now faced with a major challenge of supporting diverse applications. To address the various application demands, Radio Access Network (RAN) slicing has become one of the most promising architectural technologies for the forthcoming 5G era. RAN slicing allows the physical infrastructure resources to be shared across many RAN slices, with each slice built on top of the underlying physical RAN (substrate) is a separate logical network, which provides a set of services. Each RAN slice is constituted by various virtual network functions (VNFs) distributed geographically in numerous substrate nodes. Failures may occasionally arise from substrate. RAN configuration schemes for the network are imperative to relieve VNFs from substrate node failures (remapping/re-embedding VNFs onto live substrate nodes). This project aims to explore a new scheme and algorithms to enhance the robustness of RAN slicing by addressing the RAN configuration issue for slice recovery in a unified framework, referred to as RS-configuration. This project will build a theoretical and computational scheme that formalizes this insight and provides efficient and practical techniques for RAN slice recovery by mapping VNFs efficiently in the RAN slicing. This research program will also be integrated with education to develop new courses and a new series of case-study class modules in an advanced networking course as well as the design and analysis of algorithm courses at Kennesaw State University. Outreach programs through the university will be utilized to ensure the dissemination of the results. The PI will also release the implementation of the proposed scheme and algorithms in public domains. The goal of this project is to develop optimization models and methods for 1) establishing the theoretical foundation for using RS-configuration to construct a VNF mapping plan for RAN slice recovery optimization; 2) developing a new scheme and algorithms needed to map VNFs efficiently and finally 3) applying our theoretical and algorithmic development to investigate the robustness of RAN slicing and trade-offs between RAN slice recovery and RAN configuration in the RAN-related networking environment. Methodologies will be developed in the context of mathematical programing and graph theory that will help obtain more efficient and fast solutions performing within reasonable bounds of computational complexity. Hence, this research on new scheme and algorithms for RAN slicing will provide the computational basis towards building a robust RAN slicing and contribute to the development of new networking technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着新业务和互联网应用的快速增长,传统蜂窝网络面临着支持多样化应用的重大挑战。为了满足各种应用需求,无线接入网络(RAN)切片已成为即将到来的5G时代最有前途的架构技术之一。 RAN 切片允许在多个 RAN 切片之间共享物理基础设施资源,每个切片构建在底层物理 RAN(底层)之上,是一个独立的逻辑网络,提供一组服务。每个 RAN 切片由分布在众多底层节点中的各种虚拟网络功能 (VNF) 构成。故障有时可能是由基板引起的。网络的 RAN 配置方案对于缓解 VNF 底层节点故障(将 VNF 重新映射/重新嵌入到活动底层节点上)至关重要。该项目旨在探索一种新的方案和算法,通过在统一框架(称为RS配置)中解决切片恢复的RAN配置问题来增强RAN切片的鲁棒性。该项目将构建一个理论和计算方案,将这一见解形式化,并通过在 RAN 切片中有效映射 VNF 来为 RAN 切片恢复提供高效且实用的技术。该研究计划还将与教育相结合,在肯尼索州立大学的高级网络课程以及算法课程的设计和分析中开发新课程和一系列新的案例研究课程模块。将利用大学的外展计划来确保成果的传播。 PI 还将在公共领域发布所提议方案和算法的实现。该项目的目标是开发优化模型和方法,以实现以下目的:1)为使用 RS 配置构建用于 RAN 切片恢复优化的 VNF 映射计划奠定理论基础; 2) 开发有效映射 VNF 所需的新方案和算法,最后 3) 应用我们的理论和算法开发来研究 RAN 切片的鲁棒性以及 RAN 相关网络环境中 RAN 切片恢复和 RAN 配置之间的权衡。将在数学编程和图论的背景下开发方法,这将有助于在计算复杂性的合理范围内获得更高效、更快速的解决方案。因此,这项关于 RAN 切片新方案和算法的研究将为构建强大的 RAN 切片提供计算基础,并有助于新网络技术的开发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
5G network slicing and drone-assisted applications: a deep reinforcement learning approach
5G网络切片和无人机辅助应用:深度强化学习方法
- DOI:10.1145/3555661.3560873
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Le, Linh;Nguyen, Tu N.;Suo, Kun;He, Jing
- 通讯作者:He, Jing
Entanglement Routing For Quantum Networks: A Deep Reinforcement Learning Approach
量子网络的纠缠路由:一种深度强化学习方法
- DOI:10.1109/icc45855.2022.9839240
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Le, Linh;Nguyen, Tu N.;Lee, Ahyoung;Dumba, Braulio
- 通讯作者:Dumba, Braulio
Robust Efficient License Plate and Character Detection System Based on Simplified CNN
- DOI:10.1145/3564746.3587108
- 发表时间:2023-04-12
- 期刊:
- 影响因子:0
- 作者:Selena He;Tu N. Nguyen;Kun Suo
- 通讯作者:Kun Suo
Maximizing Key Distribution Capability: An Application in Quantum Cryptography
最大化密钥分发能力:量子密码学中的应用
- DOI:10.1109/qce57702.2023.00134
- 发表时间:2023-09-17
- 期刊:
- 影响因子:0
- 作者:Tu N. Nguyen;Dung H. P. Nguyen;Manh V. Nguyen;Thinh V. Le;Bing;Thang N. Dinh
- 通讯作者:Thang N. Dinh
Towards Fidelity-Optimal Qubit Mapping on NISQ Computers
在 NISQ 计算机上实现保真度最优的量子位映射
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Khandavilli, Sri;Palanisamy, Indu;Nguyen, Manh V.;Le, Thinh V.;Nguyen, Tu N.;Dinh, Thang N.
- 通讯作者:Dinh, Thang N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tu Nguyen其他文献
Extraordinary acquirers $
非凡收购者 $
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Golubov;Alfred Yawson;Huizhong Zhang;G14 G34;Hendrik Bessembin;Murillo Campello;E. Croci;Cláudia Custódio;Sudipto Dasgupta;François Derrien;B. Eckbo;Alex Edmans;Daniel Ferreira;Eliezer M. Fich;J. Forker;J. Harford;Wei Jiang;Marcin Kacperczyk;Ronald Masulis;Holger Mueller;Tu Nguyen;Micah Officer;D. Petmezas;Scott Richardson;S. Sudarsanam;N. Travlos;P. Volpin - 通讯作者:
P. Volpin
Large Wealth Creation in Mergers and Acquisitions
并购创造大量财富
- DOI:
10.2139/ssrn.2020507 - 发表时间:
2017-11-07 - 期刊:
- 影响因子:0
- 作者:
Eliezer M. Fich;Tu Nguyen;Micah S. Officer - 通讯作者:
Micah S. Officer
Evaluation of antimicrobial activities of Bacillus megaterium with a third-generation cephalosporin (ceftriaxone)
第三代头孢菌素(头孢曲松)对巨大芽孢杆菌的抗菌活性评价
- DOI:
10.7324/japs.2015.50903 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Tu Nguyen;L. Thu - 通讯作者:
L. Thu
Magnetic structure and anisotropy of [Co/Pd](5)/NiFe multilayers
[Co/Pd](5)/NiFe多层膜的磁结构和各向异性
- DOI:
10.1103/physrevb.91.014407 - 发表时间:
2015-01-09 - 期刊:
- 影响因子:3.7
- 作者:
L. Tryputen;F. Guo;F. Liu;Tu Nguyen;S. Mohseni;Sunjae Chung;Y. Fang;J. Åkerman;R. McMichael;C. Ross - 通讯作者:
C. Ross
A Simple Cloning-free Method to Efficiently Induce Gene Expression Using CRISPR/Cas9
一种使用 CRISPR/Cas9 有效诱导基因表达的简单非克隆方法
- DOI:
10.1016/j.omtn.2018.11.008 - 发表时间:
2018-08-27 - 期刊:
- 影响因子:0
- 作者:
Lyujie Fang;S;y S. C. Hung;y;Jennifer Yek;Layal El Wazan;Tu Nguyen;Shahnaz Khan;Shiang Y. Lim;A. Hewitt;R. C. Wong - 通讯作者:
R. C. Wong
Tu Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tu Nguyen', 18)}}的其他基金
Travel: NSF Student Travel Grant for 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
旅费:2024 年 IEEE 国际量子计算与工程会议 (QCE) 的 NSF 学生旅费补助金
- 批准号:
2417602 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229073 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229073 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
失重效应影响中枢神经系统药物脑空间分布及药动学的机制和调控研究
- 批准号:82373939
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
中枢神经系统免疫豁免微环境中CAR-T细胞的抗淋巴瘤效应与命运转归
- 批准号:82330004
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
LncMOB3A-2编码多肽在肠外致病性大肠杆菌入侵中枢神经系统中的作用机制研究
- 批准号:32302954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: CNS: Towards Robust and Efficient Dynamic Spectrum Sharing with Knowledge Transfer
CRII:CNS:通过知识转移实现稳健、高效的动态频谱共享
- 批准号:
2245918 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CNS: Design and System Technology Co-optimization Towards Addressing the Memory Bottleneck Problem of Deep Learning Hardware
CRII:CNS:设计和系统技术协同优化解决深度学习硬件的内存瓶颈问题
- 批准号:
2153394 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CNS: Towards Spectrum and Energy Efficient Large-scale IoT Communications: A Cross-layer Optimization Approach
CRII:CNS:迈向频谱和节能的大规模物联网通信:跨层优化方法
- 批准号:
2153428 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CNS: Towards Spectrum and Energy Efficient Large-scale IoT Communications: A Cross-layer Optimization Approach
CRII:CNS:迈向频谱和节能的大规模物联网通信:跨层优化方法
- 批准号:
2236449 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CNS: Towards an Efficient Serverless Mobile Edge Computing Network
CRII:CNS:迈向高效的无服务器移动边缘计算网络
- 批准号:
2153220 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant