Collaborative Research: Data-Driven Metrology and Inspection Technology for Semiconductor Wafer-Level Manufacturing
合作研究:用于半导体晶圆级制造的数据驱动计量和检测技术
基本信息
- 批准号:2124999
- 负责人:
- 金额:$ 30.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant supports research advancing wafer-level semiconductor manufacturing and inspection technology, establishing the data and technical architecture needed to ensure sustainable solutions and scaling digital innovation across the wafer metrology and inspection processes. This research will generate new knowledge and principles used in the wafer/thin-film inspection, metrology, design and manufacturing needed in the electronics industry. Modeling methodologies are created for the inspection capability of various defect types at wafer scale. Semiconductor metrology and inspection tools are presently stand-alone machines operated independently and there is an increasing need for creating an automated and integrated metrology and inspection across semiconductor manufacturing processes. This project can accelerate the semiconductor industry’s digital transformation through hardware and software integration, connectivity, intelligence, visualization, and flexible automation. An integrated and intelligent framework for semiconductor wafer/thin-film metrology and inspection technologies is developed to monitor, diagnose and control the quality of wafer-level defects, by using super-resolution 3D imaging process, as well as thin-film material properties. This grant supports the semiconductor manufacturing workforce development, providing research and education opportunities for undergraduate and graduate students including underrepresented groups to gain knowledge and hands-on experience in semiconductor technology. The semiconductor process automation and digitalization based on strobo-spectroscopy and dexel-based deep learning algorithms provide for a wafer/thin-film inspection and metrology capability to detect the wafer-level or packaging-level anomalies. A strobo-spectroscopy capability combined with a spectral imaging technology allows for the synchronized spectroscopic analysis and high-speed imaging capturing of both the spectral response and spatial images as the probe scans the wafer surface. The combined spectral response and camera images are converted to 3D data representations to train dexel-based deep learning algorithms and predict wafer grade, defect type, and defect locations. The dexel-based approach to 3D wafer topography data through 3D correlation Neural Network (CNN) and Recurrent Neural Network (RNN) architectures is established to improve computational speed and prediction accuracy. By combining strobo-spectroscopy and deep learning algorithms, this research will fill a critical knowledge gap in automated inspection technology and in the fundamental identification of the wafer and thin-film abnormalities and variation in material properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款支持研究推进晶圆级半导体制造和检测技术,建立确保可持续解决方案所需的数据和技术架构,并在晶圆计量和检测过程中扩展数字创新。这项研究将产生晶圆/检测过程中使用的新知识和原理。电子行业所需的薄膜检测、计量、设计和制造建模方法是为晶圆级各种缺陷类型的检测能力而创建的。半导体计量和检测工具目前是独立运行的独立机器。人们越来越需要在半导体制造过程中创建自动化和集成的计量和检测,该项目可以通过硬件和软件集成、连接性、智能化、可视化和灵活的自动化来加速半导体行业的数字化转型。开发半导体晶圆/薄膜计量和检测技术,通过使用超分辨率 3D 成像工艺以及薄膜材料特性来监控、诊断和控制晶圆级缺陷的质量。该资助支持半导体制造。劳动力发展,提供研究和为本科生和研究生(包括代表性不足的群体)提供教育机会,以获取半导体技术方面的知识和实践经验。基于频闪光谱和基于 dexel 的深度学习算法的半导体工艺自动化和数字化提供了晶圆/薄膜检查和技术。检测晶圆级或封装级异常的计量能力频闪光谱能力与光谱成像技术相结合,可以对两者进行同步光谱分析和高速成像捕获。当探头扫描晶圆表面时,组合的光谱响应和相机图像被转换为 3D 数据表示,以训练基于 dexel 的深度学习算法并预测晶圆等级、缺陷类型和 3D 晶圆的缺陷位置。通过结合 3D 相关神经网络 (CNN) 和循环神经网络 (RNN) 架构建立地形数据,以提高计算速度和预测精度。频闪光谱和深度学习算法,这项研究将填补自动检测技术以及晶圆和薄膜异常和材料特性变化的基本识别方面的关键知识空白。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wafer particle inspection technique using computer vision based on a color space transform model
- DOI:10.1007/s00170-023-11888-y
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Heebum Chun;Jingyan Wang;Jungsub Kim;Chabum Lee
- 通讯作者:Heebum Chun;Jingyan Wang;Jungsub Kim;Chabum Lee
A single camera unit-based three-dimensional surface imaging technique
- DOI:10.1007/s00170-023-11866-4
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Yinhe Wang;Xiangyu Guo;Jungsub Kim;Pengfei Lin;Kuan Lu;Hyunjae Lee;Chabum Lee
- 通讯作者:Yinhe Wang;Xiangyu Guo;Jungsub Kim;Pengfei Lin;Kuan Lu;Hyunjae Lee;Chabum Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ChaBum Lee其他文献
Qualitative Edge Topology Inspection and Interpretation by Enhanced Knife-Edge Interferometry
通过增强型刀口干涉测量法进行定性边缘拓扑检查和解释
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhikun Wang;ChaBum Lee - 通讯作者:
ChaBum Lee
ChaBum Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ChaBum Lee', 18)}}的其他基金
Photomask Defect Inspection and Metrology for Semiconductor Lithography Technology
半导体光刻技术的光掩模缺陷检测和计量
- 批准号:
1855473 - 财政年份:2019
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
I-Corps: Cutting Tool Wear Monitoring Sensor
I-Corps:切削刀具磨损监测传感器
- 批准号:
1926275 - 财政年份:2019
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: Improved Freeform Measurement through Fiber-based Metrology
合作研究:通过基于光纤的计量改进自由形状测量
- 批准号:
1902697 - 财政年份:2018
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: Edge Surface Topography Characterization for Precision Sensing Technology
合作研究:精密传感技术的边缘表面形貌表征
- 批准号:
1902686 - 财政年份:2018
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: Improved Freeform Measurement through Fiber-based Metrology
合作研究:通过基于光纤的计量改进自由形状测量
- 批准号:
1663210 - 财政年份:2017
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: Edge Surface Topography Characterization for Precision Sensing Technology
合作研究:精密传感技术的边缘表面形貌表征
- 批准号:
1463502 - 财政年份:2015
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: Edge Surface Topography Characterization for Precision Sensing Technology
合作研究:精密传感技术的边缘表面形貌表征
- 批准号:
1564254 - 财政年份:2015
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
相似国自然基金
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
网络空间中基于泛配置类数据的协作性恶意行为识别研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于无人机遥感成像及分布式数据协作的光伏发电预测理论研究
- 批准号:51907151
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
面向协作式云计算的数据完整性验证理论与方法研究
- 批准号:61702379
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
面向多学科协作的数据世系建模及溯源关键问题研究
- 批准号:U1630115
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:联合基金项目
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 30.15万 - 项目类别:
Standard Grant