CIF: Small: Low Complexity Massive MIMO Systems: Synergistic use of Array Geometry, Modeling and Learning
CIF:小型:低复杂性大规模 MIMO 系统:阵列几何、建模和学习的协同使用
基本信息
- 批准号:2124929
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project addresses the challenges of next-generation wireless communication systems. A key enabling technology for reliable and high-data-rate communication is the deployment of Multiple Input Multiple Output (MIMO) systems, which consist of multiple antennas for transmission and reception. With the use of the millimeter-wave (mmWave) frequencies in next-generation systems, the shorter wavelength enables deployment of many antennas in a small physical area, leading to massive MIMO systems. Massive MIMO systems, however, tend to have high complexity, high power consumption and high cost. This project seeks to do more with less: “Less” refers to limited hardware (fewer radio-frequency chains, one-bit analog to digital converters, etc.) and “more” to being able to extract the benefits (with minimal degradation) of massive MIMO systems by working around these hardware limitations. To do more with less, the project adopts a synergistic approach where innovations in system architecture and algorithms (model-based and data-driven) complement each other via judicious exploitation of structure (antenna array geometry and modeling) aided by powerful inference frameworks (sparse Bayesian learning and machine-learning techniques). The project will lead to state-of-the-art wireless communication systems that should help with maintaining US leadership in this important technology as well to train the next generation of researchers in this area of strategic importance.To develop low-complexity, low-cost, next-generation mmWave massive MIMO systems, this project has two major components. One is to harness antenna array geometry, both for one-dimensional and two-dimensional arrays, for rich channel sensing with fewer sensors complemented by robust inference. A key aspect of this work is embedding a nested array into a massive MIMO architecture employing fewer radio-frequency chains. The rich sensing capability of the nested array is being maximally exploited using the sparse Bayesian learning method. The channel sensing is also complemented with enhanced channel models incorporating variable and unknown angular spreads. A further component is the use of learning through deep neural networks to compensate for nonlinearities introduced to reduce power and cost. Models complemented by learning as well as fully data-driven techniques are being developed that address the specific and unique needs of wireless systems, such as variable numbers of users and channel coherence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了下一代无线通信系统的挑战,实现可靠和高数据速率通信的关键技术是部署多输入多输出(MIMO)系统,该系统由多个用于传输和接收的天线组成。在下一代系统中使用毫米波(mmWave)频率,较短的波长可以在较小的物理区域内部署许多天线,从而导致大规模 MIMO 系统,但往往具有高复杂性、高可靠性。功耗和高该项目力求用更少的成本做更多的事情:“更少”是指有限的硬件(更少的射频链、一位模数转换器等),而“更多”是指能够获得收益(以最小的成本)。为了用更少的资源做更多的事情,该项目采用了一种协同方法,其中系统架构和算法(基于模型和数据驱动)的创新通过明智地利用结构(基于模型和数据驱动)相互补充。天线阵列几何形状和该项目将产生最先进的无线通信系统,这将有助于保持美国在这一重要技术方面的领先地位,并培训下一代。为了开发低复杂性、低成本的下一代毫米波大规模 MIMO 系统,该项目有两个主要组成部分:一是利用天线阵列几何形状,两者均适用于一维。和二维数组,对于这项工作的一个关键方面是使用更少的射频链将嵌套阵列嵌入到大规模 MIMO 架构中,并使用稀疏贝叶斯最大程度地利用嵌套阵列的丰富传感能力。通道感测还辅以包含可变和未知角度扩展的增强通道模型,另一个组成部分是通过深度神经网络进行学习来补偿引入的非线性,以降低补充模型的功耗和成本。通过学习以及完全数据驱动的技术正在开发,以满足无线系统的特定和独特需求,例如可变数量的用户和信道一致性。该奖项反映了 NSF 的法定使命,并通过使用评估被认为值得支持基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Super-Resolution With Binary Priors: Theory and Algorithms
二元先验的超分辨率:理论和算法
- DOI:10.1109/tsp.2023.3260564
- 发表时间:2023
- 期刊:
- 影响因子:5.4
- 作者:Sarangi, Pulak;Hattori, Ryoma;Komiyama, Takaki;Pal, Piya
- 通讯作者:Pal, Piya
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees.
ResNEsts 和 DenseNEsts:具有改进表示保证的基于块的 DNN 模型。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chen,Kuan-Lin;Lee,Ching-Hua;Garudadri,Harinath;Rao,BhaskarD
- 通讯作者:Rao,BhaskarD
Is Vector Quantization Good Enough for Access Point Placement?
矢量量化对于接入点放置是否足够好?
- DOI:10.1109/ieeeconf53345.2021.9723121
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gopal, Govind R.;Villardi, Gabriel Porto;Rao, Bhaskar D.
- 通讯作者:Rao, Bhaskar D.
Measurement Matrix Design for Sample-Efficient Binary Compressed Sensing
- DOI:10.1109/lsp.2022.3179230
- 发表时间:2022-01-01
- 期刊:
- 影响因子:3.9
- 作者:Sarangi, Pulak;Pal, Piya
- 通讯作者:Pal, Piya
Modified Vector Quantization for Small-Cell Access Point Placement with Inter-Cell Interference
- DOI:10.1109/twc.2022.3148996
- 发表时间:2020-11
- 期刊:
- 影响因子:10.4
- 作者:G. R. Gopal;Elina Nayebi;G. Villardi;B. Rao
- 通讯作者:G. R. Gopal;Elina Nayebi;G. Villardi;B. Rao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhaskar Rao其他文献
Comparison of performance of SWAT and SIMHYD models in simulation of stream flow from Hidkal dam catchment area of India under present and future scenarios
SWAT 和 SIMHYD 模型在当前和未来情景下模拟印度 Hidkal 大坝集水区水流的性能比较
- DOI:
10.53550/eec.2023.v29i03s.070 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bhaskar Rao;K. V. Rao;G. V. S. Reddy;M. Nemichandrappa;B. S. Polisgowdar;M. U. Bhanu - 通讯作者:
M. U. Bhanu
Design and Development of Library Packages for Mixed-Signal Designs
混合信号设计库包的设计和开发
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
R. Rao;Dr.B.K.Madhavi;P.Vijaya;Bhaskar Rao - 通讯作者:
Bhaskar Rao
Bhaskar Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhaskar Rao', 18)}}的其他基金
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
- 批准号:
2225617 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: SMALL: MASSIVE MIMO SYSTEMS: Novel Channel Modeling and Estimation Methods
CIF:小型:大规模 MIMO 系统:新颖的信道建模和估计方法
- 批准号:
1617365 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Novel (Channel Modeling, Feedback, and Cognitive) Approaches in Wireless Communications
CIF:小型:无线通信中的新颖(信道建模、反馈和认知)方法
- 批准号:
1115645 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: A Multi-User Communication and Information Theoretic Approach to the Sparse Signal Recovery Problem
EAGER:解决稀疏信号恢复问题的多用户通信和信息理论方法
- 批准号:
1144258 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Theory and Algorithms for Exploiting Sparsity in Signal Processing Applications
在信号处理应用中利用稀疏性的理论和算法
- 批准号:
0830612 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Theory, Algorithms, and Applications of Signal Processing with the Sparseness Constraint
稀疏约束信号处理的理论、算法和应用
- 批准号:
9902961 - 财政年份:1999
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Novel Constrained Least Squares Algorithms With Application to MEG
新颖的约束最小二乘算法在 MEG 中的应用
- 批准号:
9220550 - 财政年份:1993
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Tracking Analysis of Recursive Stochastic Algorithms
递归随机算法的跟踪分析
- 批准号:
8711984 - 财政年份:1988
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
IL-1R2低表达中性粒细胞亚群通过p38-铁死亡途径促进非小细胞肺癌进展的机制研究
- 批准号:82372855
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IMRCs调控CPNE1-NLK-STAT3通路介导小胶质细胞极化改善慢性低灌注性血管性认知障碍的机制研究
- 批准号:82301450
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Plin2经脂质代谢途径调控小胶质细胞炎症反应在慢性低灌注脑白质损伤中的作用及机制研究
- 批准号:82301507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低强度rTMS调控小胶质细胞Kv1.3钾通道抑制脑缺血早期神经元焦亡的研究
- 批准号:82302865
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针对“低小慢”无人机导航欺骗的全要素机理分析与建模
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
- 批准号:
2131115 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Secure and Fast Federated Low-Rank Recovery from Few Column-wise Linear, or Quadratic, Projections
CIF:小型:通过少量列线性或二次投影进行安全快速的联合低秩恢复
- 批准号:
2115200 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
- 批准号:
2131106 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Low Complexity Maximum-Likelihood Decoding Through Serial List Decoding
CIF:小:通过串行列表解码进行低复杂度最大似然解码
- 批准号:
2008918 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant