Collaborative Research: SaTC: CORE: Medium: PREMED: Privacy-Preserving and Robust Computational Phenotyping using Multisite EHR Data

合作研究:SaTC:核心:中:PREMED:使用多站点 EHR 数据的隐私保护和鲁棒计算表型分析

基本信息

项目摘要

Tensor analysis offers an effective approach to convert massive Electronic Health Records (EHRs) into meaningful and interpretable clinical concepts, or phenotypes, such as diseases and disease subtypes. It can cluster patients into subgroups and capture the interactions between multiple attributes (e.g., specific procedures used to treat a disease), enabling precision medicine. Effective phenotyping needs to be supported by a large number of diverse samples to avoid potential population bias. A major challenge is how to derive phenotypes jointly across multiple institutions, while preserving individual patients' privacy at each site. The goal of this project is to develop a federated tensor factorization framework for Privacy-preserving, Robust, and Efficient computational phenotyping using Multisite EHR Data (PREMED). While many techniques have been developed for federated learning for each of these goals, their synergy has not been well studied. Communication-efficient techniques such as compression have an intrinsic benefit to privacy (smaller disclosure risks) and robustness (smaller adversarial impact) due to the compressed and obfuscated communication. Further, federated tensor factorization presents unique challenges due to its multi-factor structure and unsupervised nature. The project aims to exploit the synergy between efficiency, privacy, and robustness and address the three interrelated challenges with a holistic approach, while utilizing the multi-factor structure of tensor factorization. The research outcome will allow institutions to jointly perform computational phenotyping using their privacy-protected data effectively and efficiently. This project includes a set of interrelated objectives including: (1) developing communication-efficient techniques for federated tensor factorization such as local Stochastic Gradient Descent (SGD) to reduce communication frequency; and multi-level compression methods to reduce per-round communication leveraging the multi-factor structure of tensor factorization; (2) developing privacy-preserving federated tensor factorization methods by exploiting the intrinsic privacy benefit of the communication-efficient techniques; and privacy-preserving input synthesization methods that offer more versatility; and (3) developing robust statistical aggregation methods for handling potential Byzantine failures and malicious sites by utilizing the intrinsic robustness benefit of the communication-efficient techniques; and robust learning-based aggregation methods for sparse settings based on truth inference and adaptive site valuation approaches. The project includes case studies using real EHR data from Emory and UTHealth for phenotype discovery and phenotype-based predictive studies in the context of Alzheimer's Disease and Sepsis. The project also includes a set of synergistic activities including organization of multi-site computational phenotyping challenges; development of collaborative sidecar courses; and active involvement of undergraduates, women and underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
张量分析提供了一种有效方法,可将大量电子健康记录 (EHR) 转换为有意义且可解释的临床概念或表型,例如疾病和疾病亚型。它可以将患者分为亚组并捕获多个属性之间的相互作用(例如用于治疗疾病的特定程序),从而实现精准医疗。有效的表型分析需要大量不同样本的支持,以避免潜在的群体偏差。一个主要的挑战是如何跨多个机构联合得出表型,同时保护每个站点的个体患者的隐私。该项目的目标是使用多站点 EHR 数据 (PREMED) 开发一个联合张量分解框架,用于保护隐私、稳健且高效的计算表型。虽然针对这些目标中的每一个目标都开发了许多联邦学习技术,但它们的协同作用尚未得到充分研究。由于压缩和混淆的通信,诸如压缩之类的通信高效技术对隐私(较小的泄露风险)和鲁棒性(较小的对抗性影响)具有内在的好处。此外,联合张量分解由于其多因素结构和无监督性质而提出了独特的挑战。该项目旨在利用效率、隐私和鲁棒性之间的协同作用,并通过整体方法解决三个相互关联的挑战,同时利用张量分解的多因素结构。研究成果将使各机构能够利用其受隐私保护的数据有效且高效地联合执行计算表型分析。该项目包括一系列相互关联的目标,包括:(1)开发用于联合张量分解的通信高效技术,例如局部随机梯度下降(SGD)以降低通信频率;以及多级压缩方法,利用张量分解的多因子结构来减少每轮通信; (2)通过利用通信高效技术的内在隐私优势,开发保护隐私的联合张量分解方法;以及提供更多多功能性的保护隐私的输入合成方法; (3) 利用通信高效技术固有的鲁棒性优势,开发鲁棒的统计聚合方法来处理潜在的拜占庭故障和恶意站点;以及基于真值推理和自适应站点评估方法的稀疏设置的基于学习的稳健聚合方法。该项目包括使用埃默里大学和 UTHealth 的真实 EHR 数据进行案例研究,用于阿尔茨海默病和脓毒症的表型发现和基于表型的预测研究。该项目还包括一系列协同活动,包括组织多位点计算表型挑战;开发协作边车课程;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Federated Kinship Relationship Identification.
LLM for Patient-Trial Matching: Privacy-Aware Data Augmentation Towards Better Performance and Generalizability
用于患者试验匹配的法学硕士:隐私意识数据增强以提高性能和通用性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoqian Jiang其他文献

MULTIPAR: Supervised Irregular Tensor Factorization with Multi-task Learning
MULTIPAR:具有多任务学习的监督不规则张量分解
  • DOI:
    10.48550/arxiv.2208.00993
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifei Ren;Jian Lou;Li Xiong;Joyce Ho;Xiaoqian Jiang;Sivasubramanium Bhavan
  • 通讯作者:
    Sivasubramanium Bhavan
Secure and Differentially Private Bayesian Learning on Distributed Data
分布式数据的安全且差分隐私贝叶斯学习
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yeongjae Gil;Xiaoqian Jiang;Miran Kim;Junghye Lee
  • 通讯作者:
    Junghye Lee
Phosphorus speciation and colloidal phosphorus response to the cessation of fertilization in lime concretion black soil
石灰结核黑土中磷形态和胶体磷对停止施肥的响应
  • DOI:
    10.1016/j.pedsph.2023.01.004
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Shanshan Bai;Jinfang Tan;Zeyuan Zhang;Mi Wei;Huimin Zhang;Xiaoqian Jiang
  • 通讯作者:
    Xiaoqian Jiang
Open Imputation Server provides secure Imputation services with provable genomic privacy
开放插补服务器提供具有可证明的基因组隐私的安全插补服务
  • DOI:
    10.1101/2021.09.30.462262
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Harmanci;Miran Kim;Su Wang;Wentao Li;Yongsoo Song;K. Lauter;Xiaoqian Jiang
  • 通讯作者:
    Xiaoqian Jiang
Privacy Preserving Probabilistic Record Linkage Without Trusted Third Party
无需可信第三方的隐私保护概率记录链接

Xiaoqian Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoqian Jiang', 18)}}的其他基金

RAPID: Collaborative: REACT: Real-time Contact Tracing and Risk Monitoring via Privacy-enhanced Mobile Tracking
RAPID:协作:REACT:通过隐私增强型移动跟踪进行实时接触者追踪和风险监控
  • 批准号:
    2027790
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了