FMitF: Track I: Scalable and Quantitative Verification for Neural Network Analysis and Design
FMITF:第一轨:神经网络分析和设计的可扩展和定量验证
基本信息
- 批准号:2124039
- 负责人:
- 金额:$ 74.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Neural Networks (NNs) have been successful in many areas including computer vision, speech recognition, and natural language processing. However, due to the increasing adoption of NNs in safety-critical and socially sensitive domains such as self-driving cars, robotics, computer security, criminal justice, and medical diagnosis, there is a pressing need for developing verification techniques that can provide guarantees about dependability and safety of NN applications. Formal-verification techniques can provide guarantees of correctness; however, existing approaches are not effective in analyzing real-world NNs with large numbers of neurons and complicated model structures. This project sets a comprehensive research agenda focusing on a holistic formal-verification framework for NNs that will provide a systematic and principled approach for developing dependable and safe NNs. It is intended to benefit major machine-learning applications such as autonomous driving and contribute to the leadership of the United States in software engineering and artificial intelligence. The research findings are being widely disseminated through open-source software packages, publications in premier conferences and journals, tutorials at teaching workshops, as well as specialized K-12 programs for exposing the young generation to the frontiers of software verification and machine-learning research. The team of researchers working on this project are integrating methods from the classical computing fields such as software engineering, automated verification, and formal methods to address the unique research challenges in the dependability and safety of NN applications. Specific research directions include 1) novel symbolic quantitative analysis techniques that provide sound results for establishing dependability and safety of the state-of-the-art NN models; 2) a set of effective system-level optimizations for computation/memory efficient NN verification with sufficient cross-framework portability and high verification efficiency; 3) advanced neural architecture design and training support for exploring and developing neural network models with verifiable robustness. The success of this research agenda is intended to enable a more complete and efficient software stack for improving the scalability of NN verification techniques and the robustness of NN applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经网络 (NN) 在计算机视觉、语音识别和自然语言处理等许多领域取得了成功。然而,由于神经网络在自动驾驶汽车、机器人、计算机安全、刑事司法和医疗诊断等安全关键和社会敏感领域越来越多地采用,迫切需要开发能够为以下方面提供保证的验证技术:神经网络应用的可靠性和安全性。形式验证技术可以提供正确性的保证;然而,现有方法在分析具有大量神经元和复杂模型结构的现实世界神经网络时并不有效。该项目制定了一个全面的研究议程,重点关注神经网络的整体形式验证框架,该框架将为开发可靠和安全的神经网络提供系统和原则性的方法。旨在使自动驾驶等主要机器学习应用受益,并为美国在软件工程和人工智能领域的领导地位做出贡献。研究成果正在通过开源软件包、顶级会议和期刊上的出版物、教学研讨会上的教程以及专门的 K-12 项目广泛传播,让年轻一代接触软件验证和机器学习研究的前沿。从事该项目的研究人员团队正在集成软件工程、自动验证和形式化方法等经典计算领域的方法,以解决神经网络应用的可靠性和安全性方面的独特研究挑战。具体研究方向包括1)新颖的符号定量分析技术,为建立最先进的神经网络模型的可靠性和安全性提供良好的结果; 2)一套有效的系统级优化,用于计算/内存高效的神经网络验证,具有足够的跨框架可移植性和高验证效率; 3)先进的神经架构设计和训练支持,用于探索和开发具有可验证鲁棒性的神经网络模型。该研究议程的成功旨在实现更完整、更高效的软件堆栈,以提高 NN 验证技术的可扩展性和 NN 应用的稳健性。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference
- DOI:10.1145/3617232.3624852
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Boyuan Feng;Zheng Wang;Yuke Wang;Shu Yang;Yufei Ding
- 通讯作者:Boyuan Feng;Zheng Wang;Yuke Wang;Shu Yang;Yufei Ding
APNN-TC: Accelerating Arbitrary Precision Neural Networks on Ampere GPU Tensor Cores
- DOI:10.1145/3458817.3476157
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Boyuan Feng;Yuke Wang;Tong Geng;Ang Li;Yufei Ding
- 通讯作者:Boyuan Feng;Yuke Wang;Tong Geng;Ang Li;Yufei Ding
Faith: An Efficient Framework for Transformer Verification on GPUs
Faith:GPU 上 Transformer 验证的高效框架
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Feng, Boyuan;Tang, Tianqi;Wang, Yuke;Chen, Zhaodong;Wang, Zheng;Yang, Shu;Xie, Yuan;Ding, Yufei
- 通讯作者:Ding, Yufei
DOTA: detect and omit weak attentions for scalable transformer acceleration
- DOI:10.1145/3503222.3507738
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Zheng Qu;L. Liu;Fengbin Tu;Zhaodong Chen;Yufei Ding;Yuan Xie
- 通讯作者:Zheng Qu;L. Liu;Fengbin Tu;Zhaodong Chen;Yufei Ding;Yuan Xie
QGTC: accelerating quantized graph neural networks via GPU tensor core
- DOI:10.1145/3503221.3508408
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Yuke Wang;Boyuan Feng;Yufei Ding
- 通讯作者:Yuke Wang;Boyuan Feng;Yufei Ding
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tevfik Bultan其他文献
Tevfik Bultan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tevfik Bultan', 18)}}的其他基金
Collaborative Research: SHF: Small: Automated Quantitative Assessment of Testing Difficulty
合作研究:SHF:小型:测试难度自动定量评估
- 批准号:
2008660 - 财政年份:2020
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: HUGS: Human-Guided Software Testing and Analysis for Scalable Bug Detection and Repair
SHF:中:协作研究:HUGS:用于可扩展错误检测和修复的人工引导软件测试和分析
- 批准号:
1901098 - 财政年份:2019
- 资助金额:
$ 74.92万 - 项目类别:
Continuing Grant
SHF: Small: Differential Policy Verification and Repair for Access Control in the Cloud
SHF:小型:云中访问控制的差异策略验证和修复
- 批准号:
1817242 - 财政年份:2018
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
NSF Travel and Attendance Grant Proposal for ISSTA/SPIN 2017
NSF ISSTA/SPIN 2017 差旅和出勤补助金提案
- 批准号:
1741648 - 财政年份:2017
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Leveraging Graph Databases for Incremental and Scalable Symbolic Analysis and Verification of Web Applications
EAGER:协作研究:利用图形数据库进行增量和可扩展的 Web 应用程序符号分析和验证
- 批准号:
1548848 - 财政年份:2015
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
SHF: Small: Data Model Verification for Web Applications
SHF:小型:Web 应用程序的数据模型验证
- 批准号:
1423623 - 财政年份:2014
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
TC: Small: Collaborative Research: Viewpoints: Discovering Client- and Server-side Input Validation Inconsistencies to Improve Web Application Security
TC:小型:协作研究:观点:发现客户端和服务器端输入验证不一致以提高 Web 应用程序安全性
- 批准号:
1116967 - 财政年份:2011
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Formal Analysis of Distributed Interactions
SHF:小型:协作研究:分布式交互的形式分析
- 批准号:
1117708 - 财政年份:2011
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
TC: Small:Automata Based String Analysis for Detecting Vulnerabilities in Web Applications
TC:Small:基于自动机的字符串分析,用于检测 Web 应用程序中的漏洞
- 批准号:
0916112 - 财政年份:2009
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
SoD-HCER: Design for Verification
SoD-HCER:验证设计
- 批准号:
0614002 - 财政年份:2006
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
- 批准号:62301296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
- 批准号:72374125
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
- 批准号:
2327266 - 财政年份:2024
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
- 批准号:
2327456 - 财政年份:2024
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Harnessing a scalable platform to demonstrate multipartite quantum effects under strict conditions
ExpandQISE:轨道 1:利用可扩展平台在严格条件下演示多部分量子效应
- 批准号:
2328800 - 财政年份:2023
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮点误差分析
- 批准号:
2319507 - 财政年份:2023
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Scalable Quantum Gravimeters with Large-Momentum-Transfer Atom Interferometry
ExpandQISE:轨道 1:具有大动量转移原子干涉测量技术的可扩展量子重力仪
- 批准号:
2328663 - 财政年份:2023
- 资助金额:
$ 74.92万 - 项目类别:
Standard Grant