Mapping Dissolved Oxygen using Observations and Machine Learning
使用观察和机器学习绘制溶解氧图
基本信息
- 批准号:2123546
- 负责人:
- 金额:$ 34.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Oxygen is produced by algae in the sunlit surface waters and is released into the atmosphere. This process contributes to about the half of atmospheric oxygen. However, there is a growing consensus in the scientific community that the global ocean oxygen inventory has declined in recent decades. Ocean heat uptake causes the reduction of solubility, and changes in circulation and biogeochemical processes associated with the ocean warming can further change ocean oxygen content. The reduction of dissolved oxygen can have far-reaching impacts on the marine habitats. Recent estimates of the global oxygen decline are in the range of 0.5-3.3% over the period of 1970- 2010. Distribution of the historical O2 measurements is irregular and sparse, causing significant uncertainty in these estimates. The objective of this project is to determine changes in the dissolved oxygen content of the oceans based on observational data and machine learning techniques. The overarching hypothesis of this project is that there are significant, regional relationships between O2 and other observed quantities. Dissolved oxygen is ultimately controlled by the combination of ocean circulation, air-sea gas transfer and biological processes. These processes can be linked with other observed quantities such as temperature (T) and salinity (S), but such relationships can be complex and non-linear. Therefore, it is difficult to determine a universal relationship that governs the distribution of O2 based on the first principle. However, machine learning algorithms can extract empirical relationships between O2 and other variables from existing observations, allowing us to estimate O2 where direct observation is not available. The work will also support one graduate and one undergraduate student research and outreach activities at local events.In this project, machine learning will be used to fill data gaps in the historical O2 dataset and to generate an improved, gridded estimates of O2 from 1960 to present. This approach takes advantage of the large amount of accumulated in-situ observations over multiple decades including not only O2 itself but also other related variables such as T and S. The proposed work revolves around three hypotheses. First, the current estimates of global O2 trend and variability are strongly influenced by relatively data-rich regions such as North Atlantic and North Pacific. Machine-learning based O2 dataset with an improved gap-fill approaches is hypothesized to better represent relatively data-poor regions such as tropics and southern hemisphere oceans. Secondly, the current estimates indicate that less than half of O2 decline is explained by the solubility effect. The global O2-heat relationship measures the reinforcing effects of ocean ventilation and biogeochemistry. Machine learning can estimate empirical relationships between O2, T and other physical variables, which can be manipulated to perform sensitivity experiments. The empirical model of O2 can constrain the regional and global O2-heat relationship. Thirdly, it is hypothesized that observed O2 decline in the tropical thermocline are driven by the combination of natural climate variability and long-term trends. In the proposed work, sensitivity experiments are performed with the empirical model of O2 to evaluate the influences of long-term trends and decadal-scale changes associated with the modes of natural climate variability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氧气由藻类在日光地面水中产生,并释放到大气中。这个过程有助于大约一半的大气氧。但是,科学界越来越共识,即近几十年来,全球海洋氧气库存下降。海洋热吸收会导致溶解度的降低,并且与海洋变暖相关的循环和生物地球化学过程的变化可以进一步改变海洋氧含量。溶解氧的减少可能对海洋栖息地产生深远的影响。在1970年至2010年期间,全球氧气下降的最新估计值在0.5-3.3%的范围内。历史O2测量的分布是不规则且稀疏的,在这些估计中导致了明显的不确定性。 该项目的目的是根据观察数据和机器学习技术来确定海洋溶解的氧气含量的变化。 该项目的总体假设是O2与其他观察到的数量之间存在显着的区域关系。溶解的氧气最终由海洋循环,空气气体转移和生物过程的组合控制。这些过程可以与其他观察到的数量(例如温度(T)和盐度(S)相关,但是这种关系可能是复杂且非线性的。因此,很难根据第一个原则确定控制O2分布的普遍关系。但是,机器学习算法可以从现有观察结果中提取O2与其他变量之间的经验关系,从而使我们能够估算没有直接观察的O2。这项工作还将支持当地活动的一名研究生和一项学生的研究和外展活动。在该项目中,机器学习将用于填补历史O2数据集中的数据空白,并从1960年至展示。这种方法利用了数十年来的大量积累的原位观察结果,不仅包括O2本身,还包括其他相关变量,例如T和S。拟议的工作围绕三个假设旋转。首先,当前对全球O2趋势和可变性的估计受到北大西洋和北太平洋等相对富含数据的地区的强烈影响。假设基于机器学习的O2数据集具有改进的缝隙填充方法,以更好地代表相对数据贫乏的区域,例如热带地区和南半球海洋。其次,当前的估计表明,溶解度效应少于O2下降的一半。全球O2加热关系衡量了海洋通风和生物地球化学的增强作用。机器学习可以估计O2,T和其他物理变量之间的经验关系,这些变量可以操纵以执行灵敏度实验。 O2的经验模型可以限制区域和全球O2加热关系。第三,假设观察到热带热跃层的O2下降是由自然气候变化和长期趋势的组合驱动的。在拟议的工作中,使用O2的经验模型进行敏感性实验,以评估与自然气候变异性模式相关的长期趋势和际阶级变化的影响。该奖项反映了NSF的法定任务,并被视为值得的值得通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takamitsu Ito其他文献
[Bacteriological Properties of Meropenem-resistant Escherichia coli Isolated from Seven Patients within a Month].
一个月内从七名患者身上分离出的耐美罗培南大肠埃希菌的细菌学特性[J].
- DOI:
10.11150/kansenshogakuzasshi.91.132 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Takamitsu Ito;Izumo Kanesaka;Satoe Kurachi;A. Kanayama;I. Kobayashi - 通讯作者:
I. Kobayashi
Does sub-culturing of positive MRSA blood cultures affect vancomycin MICs?
阳性 MRSA 血培养物的传代培养是否会影响万古霉素 MIC?
- DOI:
10.1099/jmm.0.001225 - 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
Izumo Kanesaka;Takamitsu Ito;Ritsuko Shishido;M. Nagashima;Akiko Kanayama Katsuse;Hiroshi Takahashi;S. Fujisaki;I. Kobayashi - 通讯作者:
I. Kobayashi
Underestimation of global O2 loss in optimally interpolated historical ocean observations
最佳插值历史海洋观测中全球氧气损失的低估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.9
- 作者:
Takamitsu Ito;Hernan E. Garcia;Zhankun Wang;Shoshiro Minobe;Matthew C. Long;Just, Cebrian;James Reagan;Tim Boyer;Christopher Paver;Courtney Bouchard - 通讯作者:
Courtney Bouchard
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
由于最佳插值方法低估了数十年全球 O2 损失
- DOI:
10.5194/bg-21-747-2024 - 发表时间:
2024 - 期刊:
- 影响因子:4.9
- 作者:
Takamitsu Ito;Hernan E. Garcia;Zhankun Wang;S. Minobe;M. Long;Just Cebrian;Jim Reagan;Tim Boyer;C. Paver;Courtney Bouchard;Y. Takano;S. Bushinsky;A. Cervania;Curtis A. Deutsch - 通讯作者:
Curtis A. Deutsch
上層全球海洋の溶存酸素トレンド
全球海洋上层溶解氧趋势
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Takamitsu Ito; 見延 庄士郎, Matthew C. Long;Curtis Deutsch - 通讯作者:
Curtis Deutsch
Takamitsu Ito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takamitsu Ito', 18)}}的其他基金
A Mechanistic Study of Bio-Physical Interaction and Air-Sea Carbon Transfer in the Southern Ocean
南大洋生物物理相互作用和气海碳转移的机制研究
- 批准号:
1744755 - 财政年份:2018
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Collaborative Research: Combining Theory and Observations to Constrain Global Ocean Deoxygenation
合作研究:结合理论和观测来抑制全球海洋脱氧
- 批准号:
1737188 - 财政年份:2017
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Interannual variability of oxygen and macro-nutrients in the Labrador Sea
拉布拉多海氧气和大量营养素的年际变化
- 批准号:
1357373 - 财政年份:2014
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
What Controls the Variability of the Southern Ocean Productivity and Carbon Uptake?
是什么控制着南大洋生产力和碳吸收的变化?
- 批准号:
1142009 - 财政年份:2012
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Collaborative research: Understanding the spatial and temporal variability of dissolved oxygen through a hierarchy of models.
合作研究:通过模型层次结构了解溶解氧的空间和时间变化。
- 批准号:
1242313 - 财政年份:2012
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Collaborative research: Understanding the spatial and temporal variability of dissolved oxygen through a hierarchy of models.
合作研究:通过模型层次结构了解溶解氧的空间和时间变化。
- 批准号:
0851497 - 财政年份:2009
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
相似国自然基金
基于陆基和卫星遥感的富营养化湖泊溶解氧时空多尺度变化及驱动机制
- 批准号:42301443
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于溶解-沉积平衡调控钌基电解水氧析出电催化剂稳定性研究
- 批准号:22379145
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动态交联-可控溶解机制及快固化、长潜伏环氧固化剂
- 批准号:52373007
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
晚第四纪印度洋和西太平洋海洋溶解氧多指标重建及其海洋碳循环指示
- 批准号:42330204
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
潘家口水库藻类腐解对温跃层溶解氧影响规律研究
- 批准号:52309108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Analytical Tools for Concentration and Real-Time Control of Dissolved Gases and Their Regulation of Tissue Function
溶解气体浓度和实时控制及其组织功能调节分析工具的开发
- 批准号:
10567233 - 财政年份:2023
- 资助金额:
$ 34.79万 - 项目类别:
Revolutionary Multiparameter Sensor Incorporating Dissolved Oxygen, Salinity, pH and Temperature for the Aquaculture and Environmental Monitoring Industries
适用于水产养殖和环境监测行业的革命性多参数传感器,集成了溶解氧、盐度、pH 值和温度
- 批准号:
83002683 - 财政年份:2023
- 资助金额:
$ 34.79万 - 项目类别:
Innovation Loans
Collaborative Research: Estuarine metabolism and gas exchange determined from dissolved oxygen time series: method development, field evaluation, and application to historical data
合作研究:根据溶解氧时间序列确定河口代谢和气体交换:方法开发、现场评估和历史数据应用
- 批准号:
2311052 - 财政年份:2022
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Optofluidics dissolved oxygen and ammonia sensor
光流控溶解氧和氨传感器
- 批准号:
562986-2021 - 财政年份:2021
- 资助金额:
$ 34.79万 - 项目类别:
University Undergraduate Student Research Awards
Clumped Oxygen Isotope Signature of Marine Dissolved Oxygen
海洋溶解氧的聚集氧同位素特征
- 批准号:
2049298 - 财政年份:2021
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant