Excellence in Research: Ultrasensitive Electromagnetic Field Detectors Based on Quantum Defects in 3C Silicon Carbide and Cubic Boron Nitride
卓越研究:基于 3C 碳化硅和立方氮化硼量子缺陷的超灵敏电磁场探测器
基本信息
- 批准号:2101102
- 负责人:
- 金额:$ 47.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum science has attracted extensive attention in the recent years due to its potential in revolutionizing computing, telecommunication, and sensing. Native or intentional defects in wide bandgap semiconductors with spin dependent electronic transitions have demonstrated the ability to produce quantum communication, computing and sensing systems that operate at room temperature. In this project, we will study the potential of using defects in 3C silicon carbide and cubic boron nitride (both wide bandgap materials) for the fabrication of ultrasensitive electromagnetic field detectors. These ultrasensitive detectors can be used in a multitude of versatile applications including brain signal monitoring, GPS-free navigation, and Quantum Light Detection and Ranging (LIDAR). Our initial focus will be on electric field detectors. The literature on quantum sensing of properties 3C-Silicon (the cubic modification of silicon carbide) and cubic boron nitride is sparse or nonexistent. We anticipate that this will significantly contribute to the study of solid-state spins by demonstrating the feasibility of using 3C SiC and cBN in ultrasensitive electric and magnetic field detection. SiC has well-established industrial processes which is expected to enable fast large-scale manufacturing of the proposed devices. Cubic Boron Nitride is an emerging ultra-wide bandgap material, has similar mechanical strength as diamond and can be doped n or p type. This project will also have a major impact in the training of underrepresented minority undergraduate and graduate students at Morgan State University (MSU), K12 students and the public on the concepts and applications of quantum information science. The proposed project will improve the existing research and STEM training infrastructure at MSU significantly by complementing the establishment of a quantum materials research center and a new Ph.D. program in Materials Science with a focus on quantum materials. The findings of the project will be broadly disseminated through publications, conference presentations, and seminars to enhance scientific and technological understanding of ultrasensitive electric and magnetic field detection using defects.To accomplish the objectives in the proposed project, photonic crystal (PhC) structures with high quality (Q) factors (10^3) and small mode volumes will be simulated, designed and fabricated around quantum defects in order to achieve room temperature operation by enhancing PhC cavity resonance coupled defect’s Zero Phonon Line (ZPL) emission. 3C-Silicon carbide material grown on Silicon and purchased from commercial vendors as well as cBN material fabricated on diamond using our in-house growth capability will be used in this project. After growth the defects in wide bandgap materials will be characterized with photoluminescence (PL) and Optically Detected Magnetic Resonance (ODMR). These materials will be fabricated into detectors of our design. The fabricated detectors will be able to detect electric fields in the millivolt m^-1 Hz^-0.5 range and magnetic fields with a sensitivity of nanotesla Hz^-0.5.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,量子科学因其在计算、电信和传感领域的革命性潜力而受到广泛关注。具有自旋相关电子跃迁的宽带隙半导体中的固有或故意缺陷已证明能够产生量子通信、计算和传感系统。在该项目中,我们将研究利用 3C 碳化硅和立方氮化硼(均为宽带隙材料)中的缺陷来制造超灵敏电磁场探测器的潜力。可用于多种用途,包括脑信号监测、无 GPS 导航和量子光探测和测距 (LIDAR)。我们最初的重点将是关于 3C-硅特性的量子传感的文献。我们预计,这将通过证明在超灵敏中使用 3C SiC 和 cBN 的可行性,对固态自旋的研究做出重大贡献。碳化硅具有成熟的工业工艺,有望实现所提出器件的快速大规模制造。立方氮化硼是一种新兴的超宽带隙材料,具有与金刚石相似的机械强度,并且可以进行掺杂。 n 或 p 型。该项目还将对摩根州立大学(MSU)代表性不足的少数族裔本科生和研究生、K12 学生和公众有关量子信息科学概念和应用的培训产生重大影响。改善现有的密歇根州立大学的研究和 STEM 培训基础设施,补充了量子材料研究中心和新的材料科学博士项目的建立,该项目的研究结果将通过出版物、会议演讲广泛传播。以及研讨会,以增强对利用缺陷进行超灵敏电场和磁场检测的科学和技术理解。为了实现拟议项目中的目标,具有高质量(Q)因子(10^3)和小尺寸的光子晶体(PhC)结构将模拟模式体积,围绕量子缺陷进行设计和制造,以通过增强 PhC 腔谐振耦合缺陷的零声子线 (ZPL) 发射来实现室温操作。在硅上生长并从商业供应商处购买的 3C 碳化硅材料以及使用金刚石制造的 cBN 材料。我们的内部生长能力将用于该项目。生长后,宽带隙材料中的缺陷将通过光致发光 (PL) 和光学检测磁共振 (ODMR) 进行表征。制造成我们设计的探测器。制造的探测器将能够探测毫伏 m^-1 Hz^-0.5 范围内的电场和灵敏度为纳特斯拉 Hz^-0.5 的磁场。该奖项授予 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic and optical characterization of bulk single crystals of cubic boron nitride (cBN)
立方氮化硼 (cBN) 块状单晶的电子和光学表征
- DOI:10.1063/5.0092557
- 发表时间:2022-09
- 期刊:
- 影响因子:1.6
- 作者:Milas, Peker;Mathab, Sheikh;Sam Abraham, John Bishoy;Alam, Jahangir;Chandrashekar, M. V.;Robinson, Adam J.;Vora, Patrick M.;Ozturk, Birol;Spencer, Michael G.
- 通讯作者:Spencer, Michael G.
High efficiency radio frequency antennas for amplifier free quantum sensing applications
适用于无放大器量子传感应用的高效射频天线
- DOI:10.1063/5.0136233
- 发表时间:2023-04
- 期刊:
- 影响因子:1.6
- 作者:Mahtab, S.;Milas, P.;Veal, D.;Spencer, M. G.;Ozturk, B.
- 通讯作者:Ozturk, B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Birol Ozturk其他文献
Directed growth of diameter-tunable nanowires
直径可调纳米线的定向生长
- DOI:
10.1088/0957-4484/18/36/365302 - 发表时间:
2007-08-10 - 期刊:
- 影响因子:3.5
- 作者:
Birol Ozturk;I. Talukdar;B. Fl;ers;ers - 通讯作者:
ers
Masking the Peroxidase‐Like Activity of the Molybdenum Disulfide Nanozyme Enables Label‐Free Lipase Detection
- DOI:
10.1002/cbic.201800471 - 发表时间:
2018-11-05 - 期刊:
- 影响因子:3.2
- 作者:
N. N;u;u;Mustafa Salih Hizir;Neil Roberston;Birol Ozturk;M. Yigit - 通讯作者:
M. Yigit
A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications
用于电光应用的新型铌酸锂耦合谐振器光子晶体设计
- DOI:
10.1155/2015/426569 - 发表时间:
2015-11-18 - 期刊:
- 影响因子:1.7
- 作者:
Birol Ozturk;O. Yavuzcetin;S. Sridhar - 通讯作者:
S. Sridhar
Chemical and Mineralogical Composition Analysis of Different Nigerian Metakaolins
不同尼日利亚偏高岭土的化学和矿物成分分析
- DOI:
10.33736/jaspe.3884.2021 - 发表时间:
2021-10-31 - 期刊:
- 影响因子:0
- 作者:
I. Daniel;William Ghann;Igboko Ndubuisi Ndubuisi;K. Okpala;Birol Ozturk;Mohammed M. Rahman;F. I. Chowdhury;Md Nuruzzaman Khan;M. Rahman;M. Patwary;Nafees Ahmed;J. Uddin - 通讯作者:
J. Uddin
Reproducible interconnects assembled from gold nanorods
由金纳米棒组装而成的可重复互连
- DOI:
10.1063/1.2174109 - 发表时间:
2006-02-15 - 期刊:
- 影响因子:4
- 作者:
Birol Ozturk;C. Blackledge;B. Fl;ers;ers;D. Grischkowsky - 通讯作者:
D. Grischkowsky
Birol Ozturk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Birol Ozturk', 18)}}的其他基金
ExpandQISE: Track 1: Micron Scale Solid State Quantum Sensors Optimized through Machine Learning
ExpandQISE:轨道 1:通过机器学习优化微米级固态量子传感器
- 批准号:
2329242 - 财政年份:2023
- 资助金额:
$ 47.77万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Micron Scale Solid State Quantum Sensors Optimized through Machine Learning
ExpandQISE:轨道 1:通过机器学习优化微米级固态量子传感器
- 批准号:
2329242 - 财政年份:2023
- 资助金额:
$ 47.77万 - 项目类别:
Standard Grant
相似国自然基金
新型Argonaute‒Csm6‒DNAzyme生物传感机制用于食源性致病菌超灵敏与现场化检测的研究
- 批准号:32372415
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于M13噬菌体定向有序组装策略的真菌毒素超灵敏动态光散射免疫传感新方法的研究
- 批准号:32302209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DNA折纸等离激元增强荧光的食品中真菌毒素超灵敏多元传感检测技术研究
- 批准号:82373577
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于液态金属弹珠可逆接触行为机制的超灵敏柔性触觉传感研究
- 批准号:62301522
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
级联信号放大纳米质谱探针集的构建及其超灵敏定量检测体液中痕量活性致病菌的临床研究
- 批准号:22304085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Nanopore-Based HIV Self-Test for Ultrasensitive p24 Quantification in FingerPrick Blood
基于纳米孔的 HIV 自检,可对 FingerPrick 血液中的 p24 进行超灵敏定量
- 批准号:
10594132 - 财政年份:2023
- 资助金额:
$ 47.77万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10833236 - 财政年份:2023
- 资助金额:
$ 47.77万 - 项目类别:
Ultrasensitive Point of Care Antigen Test for Detection of Neisseria Gonorrhoeae Using Plasmonic Flours
使用等离子面粉检测淋病奈瑟菌的超灵敏护理点抗原测试
- 批准号:
10726196 - 财政年份:2023
- 资助金额:
$ 47.77万 - 项目类别:
High-throughput, purification-free, and ultrasensitive transmembrane nanosensor arrays for digital counting of microRNA biomarkers of intact exosomes
高通量、免纯化、超灵敏跨膜纳米传感器阵列,用于对完整外泌体的 microRNA 生物标志物进行数字计数
- 批准号:
10613253 - 财政年份:2023
- 资助金额:
$ 47.77万 - 项目类别:
Ultrasensitive, High-Specificity Rapid Test to Support the End-Game of the Global Program to Eliminate Lymphatic Filariasis
超灵敏、高特异性快速检测,支持全球消除淋巴丝虫病计划的最后阶段
- 批准号:
10480110 - 财政年份:2022
- 资助金额:
$ 47.77万 - 项目类别: