Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
基本信息
- 批准号:2054194
- 负责人:
- 金额:$ 29.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Korteweg-de Vries equation was introduced in the 1890s to explain the experimental observation of solitary waves on the surface of shallow channels of water. These waves travel large distances while maintaining their profile. Still more astounding is the fact that such waves undergo particle-like interactions; this prompted researchers to introduce the term "soliton" to describe them. The goal of this project is to deepen our understanding of other equations that exhibit the same phenomenology. One particular challenge that the project seeks to overcome is the fact that existing methods are poorly suited to the study of waves that are not well localized in space. The project provides research training opportunities for graduate students.The problems to be studied lie at the intersection of nonlinear dispersive PDE, completely integrable systems, and probability theory. These problems are of well-established interest and chosen both because they have resisted previous technology and because the principal investigator believes that the new techniques she helped develop make them finally accessible. Among the topics that will be investigated as part of the project are large-data sharp well-posedness for the derivative nonlinear Schrodinger equation, well-posedness for periodic and tidal completely integrable systems, constructing Gibbs dynamics for the Landau-Lifshitz model, and understanding the long-time behavior of solutions to both defocusing and focusing completely integrable systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Korteweg-de Vries 方程于 1890 年代引入,用于解释浅水通道表面孤立波的实验观察。这些波在保持其轮廓的同时传播很远的距离。更令人震惊的是,这种波会发生类似粒子的相互作用。这促使研究人员引入“孤子”一词来描述它们。该项目的目标是加深我们对表现出相同现象的其他方程的理解。该项目试图克服的一个特殊挑战是现有方法不太适合研究空间中不太局域化的波。该项目为研究生提供研究训练机会。要研究的问题是非线性色散偏微分方程、完全可积系统和概率论的交叉点。这些问题引起了广泛的兴趣,之所以选择这些问题,既是因为它们抵制了以前的技术,也因为首席研究员相信她帮助开发的新技术使它们最终变得可行。作为该项目的一部分,将研究的主题包括导数非线性薛定谔方程的大数据尖锐适定性、周期性和潮汐完全可积系统的适定性、为朗道-利夫什茨模型构建吉布斯动力学以及理解散焦和聚焦完全可积系统的解决方案的长期行为。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Visan其他文献
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential
适应具有平方反比势的薛定谔算子的索博列夫空间
- DOI:
10.1007/s00209-017-1934-8 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Changxing Miao;Monica Visan;Junyong Zhang;Jiqiang Zheng - 通讯作者:
Jiqiang Zheng
THE ENERGY-CRITICAL NLS WITH INVERSE-SQUARE POTENTIAL
具有平方反比潜力的能源关键型 NLS
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.1
- 作者:
Rowan Killip;Changxing Miao;Monica Visan;Junyong Zhang;Jiqiang Zheng - 通讯作者:
Jiqiang Zheng
Monica Visan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Visan', 18)}}的其他基金
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Integrable and Non-Integrable Dispersive Partial Differential Equations
可积和不可积色散偏微分方程
- 批准号:
1763074 - 财政年份:2018
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
- 批准号:
1500707 - 财政年份:2015
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Dispersive equations with broken symmetries
对称性破缺的色散方程
- 批准号:
1161396 - 财政年份:2012
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
- 批准号:
0901166 - 财政年份:2009
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
- 批准号:
0965029 - 财政年份:2009
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Well-posedness for higher order dispersive equations and their symmetric structure
高阶色散方程及其对称结构的适定性
- 批准号:
20J12750 - 财政年份:2020
- 资助金额:
$ 29.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows