LEAP-HI: Manufacturing of Silicon-based Hybrid Organic-Inorganic Quantum Building Blocks

LEAP-HI:硅基杂化有机-无机量子构件的制造

基本信息

  • 批准号:
    2053567
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Quantum computing promises to address our growing need for faster and more energy efficient information processing technologies. Today quantum computers rely on materials and structures that need to be both extremely pure and operated at cryogenic temperatures, a limitation referred to as “the tyranny of low temperature”. These constraints put into question the scalability of quantum computers and, in turn, their potential to manage the sheer magnitude of information generated by modern-day society. This Leading Engineering for America's Prosperity, Health, and Infrastructure (LEAP-HI) project will investigate alternative materials and structures that have the potential to store and optically access quantum information at room temperature. The structures are based on small semiconductor (inorganic) nanoparticles integrated with carefully designed organic molecules. The main outcomes of this project will be (a) a set of design guidelines for these hybrid organic-inorganic structures that optimize the optical and electronic coupling between the two components, and (b) the development of strategies for their manufacturing that, while being novel, are also inherently scalable to large production volumes. Achieving these goals will allow establishing the hybrid organic-inorganic structures as the fundamental building block of the next generation of quantum computers. A broad array of activities including outreach to community colleges, internship into the principal investigator’s laboratories and outreach to the public in collaboration with local museums will be integrated into the research plan. These activities will target students at all levels (from grade school to community colleges), with particular attention towards students from underrepresented groups and the goal of encouraging them to pursue advanced degrees in STEM.This project is centered on silicon quantum dots as the inorganic component of the researched structure. This choice is motivated by their advantageous properties in terms of abundance and sustainability, and by the fact that their processing science is still in its infancy, making this field ripe for critical contributions. The project aims at achieving an unprecedented control over the optoelectronic coupling between silicon quantum dots and surrounding organic semiconducting matrices. This will be realized by grafting transmitter organic molecules onto the surface of the silicon particles, therefore tuning the interfacial chemistry and the bi-directional energy transfer between the two system components. Novel gas-phase processing schemes will be developed to produce silicon quantum dots and immediately graft their surfaces with multi-functional organic groups, providing a rapid and scalable approach to the production of the hybrid structures. Ultrafast spectroscopy will be used to elucidate the role played by interfacial chemistry on the functionality of the hybrid organic-inorganic structures. Atomistic modelling will provide theoretical foundation and guidance to this investigation. The investigators are uniquely qualified to undertake this project, as they bring together expertise in the synthesis of silicon quantum dots, the design of organic-inorganic interfaces, the photo-physical characterization of hybrid systems and the ab-initio modelling of interfacial effects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算有望满足我们对更快、更节能的信息处理技术日益增长的需求。如今,量子计算机依赖于极其纯净且在低温下运行的材料和结构,这种限制被称为“低温暴政”。这些限制使人对量子计算机的可扩展性产生疑问,进而质疑它们管理现代社会产生的海量信息的潜力。将要研究具有在室温下存储和光学获取量子信息的潜力的替代材料和结构。该结构基于与精心设计的有机分子集成的小型半导体(无机)纳米粒子。一套针对这些混合有机-无机结构的设计指南,可优化两个组件之间的光学和电子耦合,以及(b)制定其制造策略,该策略虽然新颖,但本质上也可扩展以实现大批量生产。这些目标将允许建立作为下一代量子计算机的基本构建模块的混合有机-无机结构将被纳入一系列广泛的活动,包括社区大学的推广、首席研究员实验室的实习以及与当地博物馆合作的公众推广。这些活动将针对各个级别的学生(从小学到社区大学),特别关注来自弱势群体的学生,并鼓励他们攻读 STEM 高级学位。该项目以硅量子点为中心。作为无机物这种选择的动机是它们在丰富性和可持续性方面的优势特性,以及它们的加工科学仍处于起步阶段,使得该领域的关键贡献已经成熟。控制硅量子点和周围有机半导体基质之间的光电耦合这将通过将传输有机分子接枝到硅颗粒表面来实现,从而调整界面化学和两个系统之间的双向能量转移。将开发新型气相处理方案来生产硅量子点,并立即在其表面接枝多功能有机基团,从而提供一种快速且可扩展的混合结构生产方法,用于阐明这一点。界面化学对杂化有机-无机结构的功能所发挥的作用将为这项研究提供理论基础和指导,因为研究人员汇集了硅量子合成方面的专业知识。点、有机-无机界面的设计、混合系统的光物理表征以及界面效应的从头开始建模。该奖项是 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient photon upconversion enabled by strong coupling between silicon quantum dots and anthracene
硅量子点和蒽之间的强耦合实现了高效的光子上转换
  • DOI:
    10.1038/s41557-023-01225-x
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Wang, Kefu;Cline, R. Peyton;Schwan, Joseph;Strain, Jacob M.;Roberts, Sean T.;Mangolini, Lorenzo;Eaves, Joel D.;Tang, Ming Lee
  • 通讯作者:
    Tang, Ming Lee
Gas-phase grafting for the multifunctional surface modification of silicon quantum dots
硅量子点多功能表面改性的气相接枝
  • DOI:
    10.1039/d2nr04902c
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Schwan, Joseph;Wang, Kefu;Tang, Ming Lee;Mangolini, Lorenzo
  • 通讯作者:
    Mangolini, Lorenzo
Efficient Photon Upconversion Enabled by Strong Coupling Between Organic Molecules and Quantum Dots
有机分子与量子点之间的强耦合实现高效光子上转换
  • DOI:
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kefu Wang
  • 通讯作者:
    Kefu Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lorenzo Mangolini其他文献

Gas-phase grafting for the multifunctional surface modification of silicon quantum dots
  • DOI:
    10.1039/d2nr04902c
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Joseph Schwan;Kefu Wang;Ming Lee Tang;Lorenzo Mangolini
  • 通讯作者:
    Lorenzo Mangolini
Bidirectional triplet exciton transfer between silicon nanocrystals and perylene
  • DOI:
    10.1039/d1sc00311a
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Tingting Huang;Timothy T. Koh;Joseph Schwan;Tiffany T.-T. Tran;Pan Xia;Kefu Wang;Lorenzo Mangolini;Ming L. Tang;Sean T. Roberts
  • 通讯作者:
    Sean T. Roberts
Critical barriers to the large scale commercialization of silicon-containing batteries
  • DOI:
    10.1039/d0na00589d
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Joseph Schwan;Giorgio Nava;Lorenzo Mangolini
  • 通讯作者:
    Lorenzo Mangolini
Oxide-induced grain growth in CZTS nanoparticle coatings
  • DOI:
    10.1039/c7ra04128d
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Stephen Exarhos;Edgar Palmes;Rui Xu;Lorenzo Mangolini
  • 通讯作者:
    Lorenzo Mangolini
Low temperature radical initiated hydrosilylation of silicon quantum dots
  • DOI:
    10.1039/c9fd00144a
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Timothy T. Koh;Tingting Huang;Joseph Schwan;Pan Xia;Sean T. Roberts;Lorenzo Mangolini;Ming L. Tang
  • 通讯作者:
    Ming L. Tang

Lorenzo Mangolini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lorenzo Mangolini', 18)}}的其他基金

Participant Support for 2024 Gordon Research Conference on Plasma Processing Science (GRC-PPS); Andover, New Hampshire; 21-26 July 2024
2024 年戈登等离子体加工科学研究会议 (GRC-PPS) 的参与者支持;
  • 批准号:
    2414674
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
GRC 2022 Plasma Processing Science: Plasmas and Their Interaction with Matter
GRC 2022 等离子体处理科学:等离子体及其与物质的相互作用
  • 批准号:
    2227703
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
GRC 2022 Plasma Processing Science: Plasmas and Their Interaction with Matter
GRC 2022 等离子体处理科学:等离子体及其与物质的相互作用
  • 批准号:
    2227703
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
PFI-TT: Paving the way to the commercialization of additives that boost battery performance
PFI-TT:为提高电池性能的添加剂商业化铺平道路
  • 批准号:
    1940952
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
I-Corps: Composite Materials Enabling Batteries with High Energy Density
I-Corps:复合材料使电池具有高能量密度
  • 批准号:
    1840213
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: Synthesis of Bulk Nanostructured Materials from Semiconductor Quantum Dots
职业:从半导体量子点合成块状纳米结构材料
  • 批准号:
    1351386
  • 财政年份:
    2014
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
BRIGE: Nanoparticle-Based Photovoltaic Cells from Earth-Abundant Materials
BRIGE:来自地球丰富材料的基于纳米颗粒的光伏电池
  • 批准号:
    1125660
  • 财政年份:
    2011
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似国自然基金

衰老细胞源性SLC1A5hiCDH5hi细胞外囊泡促进增龄性骨/肌丢失作用及其机制研究
  • 批准号:
    82370891
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SIRT5-线粒体代谢轴失调介导SORT1Hi肺泡巨噬细胞METs形成在围术期急性肺损伤中的作用及机制研究
  • 批准号:
    82371292
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Trem2(hi)巨噬细胞亚群维持干细胞稳态促骨再生的效应和机制研究
  • 批准号:
    82301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
仑伐替尼耐药诱导的COLEC12hi巨噬细胞亚群对肝癌免疫治疗的影响及其机制研究
  • 批准号:
    82373405
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
有氧运动通过MeCP2乳酰化激活ZFP36转录促进TREM2hi巨噬细胞抗炎功能改善动脉粥样硬化的机制研究
  • 批准号:
    82372565
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
  • 批准号:
    2401218
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
NSERC Network for Holistic Innovation in Additive Manufacturing (HI-AM)
NSERC 增材制造整体创新网络 (HI-AM)
  • 批准号:
    494158-2016
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Strategic Network Grants Program
LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
  • 批准号:
    2152984
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
NSERC Network for Holistic Innovation in Additive Manufacturing (HI-AM)
NSERC 增材制造整体创新网络 (HI-AM)
  • 批准号:
    494158-2016
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Strategic Network Grants Program
NSERC Network for Holistic Innovation in Additive Manufacturing (HI-AM)
NSERC 增材制造整体创新网络 (HI-AM)
  • 批准号:
    494158-2016
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Strategic Network Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了