Collaborative Research: CDS&E-MSS: Deep Network Compression and Continual Learning: Theory and Application

合作研究:CDS

基本信息

  • 批准号:
    2053448
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Deep neural networks (DNNs) have led to transformative developments in a wide number of tasks, such as identifying people or objects in photographs, translating and synthesizing natural language, and generating scientific and medical images. These advances were possible because neural networks are trained to find patterns in large datasets. Balancing the trade-off between the size and performance of a deep network is a vital aspect of designing deep neural networks that can easily be translated to hardware. Although deep learning yields remarkable performance in real-world problems, they consume a large amount of memory and computational resources, which limits their large-scale deployment. Once neural networks are trained, they can also be brittle in the sense that when a network is trained on a new task, it typically forgets previously learned tasks. This brittleness presents challenges in building artificial intelligence systems that are intended to learn continually throughout their lifespan, and it leads to even more computational resources spent to retrain networks on tasks they have already learned. This results in large demands for electrical power, which leads to an increased carbon footprint and adverse environmental impacts. In this project the investigators propose novel algorithms and theoretical analysis for reducing the power consumption of neural networks by compressing their learned parameters and using these compressed parameters for continual learning. Graduate students will be involved in the research and receive interdisciplinary training.The overall goal of this project is to develop a novel probabilistic framework for neural network compression. Using this framework, the investigators will develop network compression algorithms based on the connectivity between filters and layers, which provides a sparsification criterion that is efficient in both training and testing processes. After network compression identifies which parameters of a neural network are more important than others, this feature can be used to develop algorithms for continual learning which are efficient because the important parameters are prioritized for the learning of subsequent tasks. The investigators will develop compression-inspired algorithms for continual learning based on statistics of individual layers and the connectivity between layers. The investigators will also provide a sparsity analysis and theoretical explanations in the form of mathematical theorems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络 (DNN) 带来了许多任务的变革性发展,例如识别照片中的人或物体、翻译和合成自然语言以及生成科学和医学图像。 这些进步之所以成为可能,是因为神经网络经过训练可以在大型数据集中查找模式。平衡深度网络的大小和性能之间的权衡是设计可以轻松转换为硬件的深度神经网络的一个重要方面。尽管深度学习在解决现实问题中产生了显着的性能,但它们消耗大量的内存和计算资源,这限制了它们的大规模部署。一旦神经网络经过训练,它们也可能很脆弱,因为当网络接受新任务的训练时,它通常会忘记以前学过的任务。 这种脆弱性给构建旨在在整个生命周期中不断学习的人工智能系统带来了挑战,并且导致需要花费更多的计算资源来重新训练网络来执行已经学会的任务。 这导致对电力的大量需求,从而导致碳足迹增加和对环境的不利影响。在这个项目中,研究人员提出了新颖的算法和理论分析,通过压缩学习的参数并使用这些压缩的参数进行持续学习来降低神经网络的功耗。 研究生将参与研究并接受跨学科培训。该项目的总体目标是开发一种新颖的神经网络压缩概率框架。 使用该框架,研究人员将开发基于过滤器和层之间的连接性的网络压缩算法,该算法提供了在训练和测试过程中都有效的稀疏化标准。 在网络压缩识别出神经网络的哪些参数比其他参数更重要之后,此功能可用于开发高效的持续学习算法,因为重要参数会优先用于后续任务的学习。研究人员将开发受压缩启发的算法,以基于各个层的统计数据和层之间的连接进行持续学习。 研究人员还将以数学定理的形式提供稀疏性分析和理论解释。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Hand其他文献

Simultaneous Phase Retrieval and Blind Deconvolution via Convex Programming
通过凸规划进行同步相位检索和盲反卷积
ShapeFit: Exact Location Recovery from Corrupted Pairwise Directions
ShapeFit:从损坏的成对方向中恢复精确位置
Analysis of Catastrophic Forgetting for Random Orthogonal Transformation Tasks in the Overparameterized Regime
超参数化机制中随机正交变换任务的灾难性遗忘分析
  • DOI:
    10.48550/arxiv.2207.06475
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Goldfarb;Paul Hand
  • 通讯作者:
    Paul Hand
Photoperiod effect on bud burst in Prunus is phase dependent: significance for early photosynthetic development.
光周期对李属芽萌发的影响是相位依赖性的:对早期光合作用发育具有重要意义。
  • DOI:
    10.1093/treephys/16.5.491
  • 发表时间:
    1996-05-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    R. Besford;Paul Hand;Christine M. Richardson;S. D. Peppitt
  • 通讯作者:
    S. D. Peppitt

Paul Hand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Hand', 18)}}的其他基金

Foundations of Data Science Institute
数据科学研究所基础
  • 批准号:
    2022205
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Signal Recovery from Generative Priors
职业:从生成先验中恢复信号
  • 批准号:
    1848087
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
A Systems Approach to Disease Resistance Against Necrotrophic Fungal Pathogens
针对坏死性真菌病原体的抗病系统方法
  • 批准号:
    BB/M017729/1
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Sparse Principal Component Analysis via the Sparsest Element in a Subspace
通过子空间中最稀疏元素的稀疏主成分分析
  • 批准号:
    1464525
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Sparse Principal Component Analysis via the Sparsest Element in a Subspace
通过子空间中最稀疏元素的稀疏主成分分析
  • 批准号:
    1418971
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1104000
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship Award
Accelerated breeding of black rot resistant brassicas for the benefit of east African smallholders
加速培育抗黑腐病芸苔属植物,造福东非小农
  • 批准号:
    BB/F004338/2
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Bacterial and plant factors that influence adhesion of enterohaemorrhagic E. coli and Salmonella enterica to salad leaves
影响肠出血性大肠杆菌和沙门氏菌对沙拉叶粘附的细菌和植物因素
  • 批准号:
    BB/G014175/2
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Bacterial and plant factors that influence adhesion of enterohaemorrhagic E. coli and Salmonella enterica to salad leaves
影响肠出血性大肠杆菌和沙门氏菌对沙拉叶粘附的细菌和植物因素
  • 批准号:
    BB/G014175/1
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Accelerated breeding of black rot resistant brassicas for the benefit of east African smallholders
加速培育抗黑腐病芸苔属植物,造福东非小农
  • 批准号:
    BB/F004338/1
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了