MRI: Acquisition of a High-Power 2-um Laser System as the Backbone of an Utrafast X-Ray/THz Facility

MRI:采购高功率 2 微米激光系统作为超快 X 射线/太赫兹设施的骨干

基本信息

项目摘要

This project, Acquiring a High-peak-power High-repetition-rate Ultrafast Infrared Laser System at 2 µm Wavelength, provides the backbone of a multi-user facility named, "User Facility for Attosecond Soft x-rays and Terahertz (UFAST)". With the highest average power of its kind anywhere in the world today, this laser system will enable a tabletop attosecond (a billionth of a billionth of a second) soft-x-ray photon source at record high flux with sufficient photon energies for directly exciting, at the deepest level, essential atoms, such as carbon, nitrogen, and oxygen, and also enable long-wavelength-infrared and terahertz sources of high-field and few – single cycle pulse duration. These photon sources and the pump laser will be utilized to carry out frontier research projects where facility users develop the world’s fastest x-ray photon source, track electron motion at its natural time scale with atomic spatial resolution, monitor quantum/topological phase transition dynamics, investigate new photo-induced physical and chemical processes in materials, test a new theory for a novel cold-nanoplasma source, and further improve a terahertz spectroscopic tool for probing uncharted regions of the universe. Results of these research projects will advance knowledge and technologies in physical, chemical, and planetary sciences, as well as optical engineering. UFAST delivers unique parameters that are not available around the world and will enhance US competitiveness in high-flux ultrafast technologies and attosecond science. The engineering and research activities at UFAST will grant graduate and undergraduate students, as well as postdoctoral scholars, access to frontier ultrafast research and technologies, and particularly promote training of minority students in cutting-edge research projects. The future generation of work force will be trained in the construction and operation of a unique facility involving advanced photon sources and detectors, and will obtain research, teamwork, and leadership skills. In addition to the multidisciplinary nature of its applications, the facility will be accessible to users across the US and from around the world and will stimulate collaborations across research fields and institutions, as well as between experimentalists and theorists.The laser system to be acquired will deliver 2-µm-wavelength and few-cycle-duration pulses with carrier envelope phase (CEP) stabilization at a repetition rate of 100 kHz. It will be used to pump a table-top photon source of isolated attosecond pulses in the extreme ultraviolet (XUV) and water window (284 – 543 eV) range, and to pump photon sources of few – single-cycle pulses in the long wavelength infrared (8 – 15 m) and terahertz (0.6 – 60 THz) range. This new capability will enable research advances in several areas: time-resolved investigation of processes driven by or involving electronic dynamics, such as electron correlation, charge migration and transfer, in gas and condensed phase targets, quantum and topological systems as well as at surfaces; investigation of strong-field phenomena, particularly the intensity-demanding quasistatic regime, in solids over a variety of laser parameters; investigation of new optical breakdown mechanisms and optimization of laser machining quality; experimentally demonstrating photon-induced low-temperature non-equilibrium nanoplasmas; and extending laboratory spectral library with terahertz time-domain spectroscopy to fill a knowledge gap regarding the composition and evolution of the solar system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目采购 2 µm 波长的高峰值功率高重复率超快红外激光系统,为名为“阿秒软 X 射线和太赫兹用户设施 (UFAST)”的多用户设施提供了骨干。该激光系统具有当今世界同类产品中最高的平均功率,将实现桌面阿秒(十亿分之一秒)软 X 射线。光子源具有创纪录的高通量,具有足够的光子能量,可以在最深的水平上直接激发基本原子,例如碳、氮和氧,并且还可以实现高场和少数单一原子的长波长红外和太赫兹源这些光子源和泵浦激光器将用于开展前沿研究项目,设施用户可以开发世界上最快的 X 射线光子源,以原子空间分辨率跟踪电子在其自然时间尺度上的运动,监测量子/拓扑。相变动力学,研究材料中新的光致物理和化学过程,测试新型冷纳米等离子体源的新理论,并进一步改进用于探测宇宙未知区域的太赫兹光谱工具,这些研究项目的结果将促进知识和技术的发展。 UFAST 提供物理、化学和行星科学以及光学工程领域的独特参数,将增强美国在高通量超快技术和阿秒科学领域的竞争力。 UFAST将向研究生和本科生以及博士后学者提供接触前沿超快研究和技术的机会,特别是促进对少数民族学生进行尖端研究项目的培训。未来一代的劳动力将在建设和技术领域接受培训。操作独特的设施先进的光子源和探测器,并将获得研究、团队合作和领导技能。除了其应用的多学科性质之外,该设施还将可供美国和世界各地的用户使用,并将刺激。跨研究领域和机构的合作,即将获得的激光系统将提供 2 µm 波长和几个周期持续时间的脉冲,并以 100 kHz 的重复率进行载波包络相位 (CEP) 稳定。它将用于泵浦。极紫外 (XUV) 和水窗 (284 – 543 eV) 范围内的孤立阿秒脉冲的桌面光子源,以及泵浦少数单周期光子源长波长红外(8 – 15 µm)和太赫兹(0.6 – 60 THz)范围内的脉冲这一新功能将促进多个领域的研究进展:对电子动力学驱动或涉及电子动力学的过程进行时间分辨研究。气体和凝聚相目标、量子和拓扑系统以及表面强场现象的相关性、电荷迁移和转移,特别是固体中要求强度的准静态状态;各种激光参数;研究新的光学击穿机制和激光加工质量的优化;通过实验演示光子诱导的低温非平衡纳米等离子体;并利用太赫兹时域光谱扩展实验室光谱库,以填补相关知识空白该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intense infrared lasers for strong-field science
  • DOI:
    10.1364/aop.454797
  • 发表时间:
    2022-12-31
  • 期刊:
  • 影响因子:
    27.1
  • 作者:
    Chang,Zenghu;Fang,Li;Zhou,Fangjie
  • 通讯作者:
    Zhou,Fangjie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Fang其他文献

MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiberiTiO(2)-based weavable photocatalyst for removing pharmaceutical pollutants
MIL-101(Fe)纳米点诱导提高碳纤维iTiO(2)基可编织光催化剂的吸附和光催化活性,用于去除药物污染物
  • DOI:
    10.1016/j.jclepro.2021.125782
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Zhang Yan;Xiong Meiyu;Sun Anran;Shi Zhun;Zhu Bo;Macharia Daniel K.;Li Fang;Chen Zhigang;Liu Jianshe;Zhang Lisha
  • 通讯作者:
    Zhang Lisha
Doxorubicin and siRNA-PD-L1 co-delivery with T7 modified ROS-sensitive nanoparticles for tumor chemoimmunotherapy.
阿霉素和 siRNA-PD-L1 与 T7 修饰的 ROS 敏感纳米颗粒共同递送,用于肿瘤化学免疫治疗。
  • DOI:
    10.1016/j.ijpharm.2019.06.030
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Wan Wen Jun;Qu Chen Xi;Zhou Ye Juan;Zhang Liang;Chen Meng Tian;Liu Yang;You Ben Gang;Li Fang;Wang Dan Dan;Zhang Xue Nong
  • 通讯作者:
    Zhang Xue Nong
ERBB2 mutation: A promising target in non-squamous cervical cancer.
ERBB2 突变:非鳞状宫颈癌的一个有希望的靶点。
  • DOI:
    10.1016/j.ygyno.2017.12.023
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xiang Libing;Jiang Wei;Ye Shuang;He Tiancong;Pei Xuan;Li Jiajia;Chan David Wai;Ngan Hextan Yuen Sheung;Li Fang;Tao Pingping;Shen Xuxia;Zhou Xiaoyan;Wu Xiaohua;Yang Gong;Yang Huijuan
  • 通讯作者:
    Yang Huijuan
Aerosol Optical Depth Retrieval Over South Asia Using FY-4A/AGRI Data
使用 FY-4A/AGRI 数据反演南亚气溶胶光学深度
Optimal Distributed Control for a Model of Homogeneous Incompressible Two-Phase Flows
均匀不可压缩两相流模型的最优分布式控制
  • DOI:
    10.1007/s10883-020-09500-7
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Fang;You Bo
  • 通讯作者:
    You Bo

Li Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Fang', 18)}}的其他基金

CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
  • 批准号:
    2340570
  • 财政年份:
    2024
  • 资助金额:
    $ 121.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Galectin-9促进非小细胞肺癌奥希替尼获得性耐药及免疫逃逸的作用和机制研究
  • 批准号:
    82373361
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向谷氨酰胺转运体ASCT2逆转食管鳞癌对CDK4/6抑制剂获得性耐药分子机制研究
  • 批准号:
    82373360
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXK2-KCNJ2轴在阿帕替尼获得性耐药的甲状腺未分化癌中重塑细胞焦亡微环境的机制研究
  • 批准号:
    82303864
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

MRI:Acquisition of a Network Emulator for Cyber Security Research of Electric Power Grids
MRI:购买网络模拟器用于电网网络安全研究
  • 批准号:
    2214441
  • 财政年份:
    2022
  • 资助金额:
    $ 121.46万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High Power and Resolution X-ray Microscopy System for Advanced Characterization, Non-Destructive Evaluation, and Cross-Disciplinary Research & Innovation
MRI:采购高功率和分辨率 X 射线显微镜系统,用于高级表征、无损评估和跨学科研究
  • 批准号:
    2216175
  • 财政年份:
    2022
  • 资助金额:
    $ 121.46万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High-Temperature Semiconductor Processing Equipment to Support Research and Education in Power, Energy and Material Sciences
MRI:采购高温半导体加工设备以支持电力、能源和材料科学的研究和教育
  • 批准号:
    2019064
  • 财政年份:
    2020
  • 资助金额:
    $ 121.46万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High-Power 100 kHz Laser for Recording Real-Time Movies of Ultrafast Molecular Reactions
MRI:采集高功率 100 kHz 激光来记录超快分子反应的实时电影
  • 批准号:
    2019150
  • 财政年份:
    2020
  • 资助金额:
    $ 121.46万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Power-Hardware-in-the-Loop (PHIL) System to Enhance Research and Student Research Training in Engineering and Computer Science
MRI:采购动力硬件在环 (PHIL) 系统以加强工程和计算机科学领域的研究和学生研究培训
  • 批准号:
    1946057
  • 财政年份:
    2019
  • 资助金额:
    $ 121.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了