Collaborative Research: From User Reviews to User-Centered Generative Design: Automated Methods for Augmented Designer Performance
协作研究:从用户评论到以用户为中心的生成设计:增强设计师性能的自动化方法
基本信息
- 批准号:2050130
- 负责人:
- 金额:$ 20.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates design processes where the unmet needs of users are elicited from social media, online forums, and e-commerce platforms, and translated into new concept recommendations for designers using artificial intelligence (AI). The motivation stems from the growing abundance of user-generated feedback and a lack of advanced computational methods for drawing useful design knowledge and insights from that data. The research will establish a rigorous computational foundation that (1) enables large-scale elicitation of user needs from online reviews using advanced natural language processing (NLP) algorithms, and (2) translates the elicited needs into the visual and functional aspects of new concepts using novel generative adversarial networks (GAN) algorithms. The theoretical innovations will advance the fundamental understanding of how AI can augment the performance and creativity of designers in early-stage product development processes. This project will boost national competitiveness in innovation by creating tacit opportunities for designing innovative, inclusive, and competitive products. The convergent research team will create outreach initiatives for STEM students, teachers, and underrepresented minorities, and engage with industry and research stakeholders to ensure technology-market fit and successful dissemination.The overarching goal of this project is to establish a transformative, data-driven paradigm for empathetic design that augments the ability of designers to uncover and address the critical yet latent needs of users at scale. The project will create scalable and computationally efficient NLP algorithms that capture the needs of ordinary users from reviews, identify the underlying usage contexts, and infer extreme use-cases to facilitate latent need elicitation. Focus groups and interviews involving ninety design experts and crowdsourced evaluators will be conducted to test the first research hypothesis: The NLP algorithms elicit needs that are nonobvious, difficult to identify, and provide significant value and originality. The project will build novel GAN architectures and algorithms for generative design of form and function conditioned on the elicited latent user needs. New multimodal deep regression models will be developed to evaluate the quality of the generated samples based on user feedback on existing products. Laboratory studies involving fifty subjects and fifty evaluators will be performed to test the second research hypothesis: The GAN-generated design recommendations significantly improve the quality and variety of the design concepts generated by human designers. The project will lead to broad societal outcomes by fostering designer-AI co-creation and innovation centered on empathy with users to bridge the gap between user need discovery and design outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了从社交媒体、在线论坛和电子商务平台引出用户未满足的需求的设计流程,并利用人工智能(AI)转化为设计师的新概念建议。其动机源于用户生成的反馈日益丰富,以及缺乏先进的计算方法来从这些数据中提取有用的设计知识和见解。该研究将建立严格的计算基础,(1)能够使用先进的自然语言处理(NLP)算法从在线评论中大规模获取用户需求,以及(2)将所获取的需求转化为新概念的视觉和功能方面使用新颖的生成对抗网络(GAN)算法。理论创新将增进对人工智能如何增强设计师在早期产品开发过程中的表现和创造力的基本理解。该项目将通过创造设计创新、包容、有竞争力的产品的默契机会,提升国家创新竞争力。融合研究团队将为 STEM 学生、教师和代表性不足的少数群体制定推广计划,并与行业和研究利益相关者合作,以确保技术与市场的契合和成功传播。该项目的总体目标是建立一个变革性的、数据驱动的移情设计的范例,增强了设计师大规模发现和解决用户关键但潜在需求的能力。该项目将创建可扩展且计算高效的 NLP 算法,从评论中捕获普通用户的需求,识别潜在的使用上下文,并推断极端用例以促进潜在需求的挖掘。将进行由 90 名设计专家和众包评估人员参与的焦点小组和访谈,以检验第一个研究假设:NLP 算法引出不明显、难以识别的需求,并提供显着的价值和原创性。该项目将构建新颖的 GAN 架构和算法,用于根据引发的潜在用户需求进行形式和功能的生成设计。将开发新的多模态深度回归模型,以根据用户对现有产品的反馈来评估生成样本的质量。将进行涉及 50 名受试者和 50 名评估员的实验室研究来测试第二个研究假设:GAN 生成的设计建议显着提高了人类设计师生成的设计概念的质量和多样性。该项目将通过促进设计师与人工智能的共同创造和创新,以与用户的同理心为中心,弥合用户需求发现和设计成果之间的差距,从而产生广泛的社会成果。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generative Aspect-Based Sentiment Analysis with Contrastive Learning and Expressive Structure
具有对比学习和表达结构的基于生成方面的情感分析
- DOI:10.48550/arxiv.2211.07743
- 发表时间:2022-11-14
- 期刊:
- 影响因子:0
- 作者:Joseph Peper;Lu Wang
- 通讯作者:Lu Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Wang其他文献
Experimental Study on Sweep Characteristics of Gas Gravity Drainage in the Interlayer Oil Reservoir
层间油藏天然气重力排水波及特性试验研究
- DOI:
10.3389/fenrg.2021.760315 - 发表时间:
2021-11-12 - 期刊:
- 影响因子:0
- 作者:
Hong;Lu Wang;Daiyu Zhou;Fuyong Wang;Shi Li;Jun Li;Xinglong Chen;An;Haishui Han - 通讯作者:
Haishui Han
Programed self-assembly of microstructures: self-sorting based on size-matched disk-like molecules and remarkable cooperative reinforcement of hydrogen-bonding and donor–acceptor interaction
微结构的程序化自组装:基于尺寸匹配的盘状分子的自排序以及氢键和供体-受体相互作用的显着协同增强
- DOI:
10.1016/j.tetlet.2011.05.082 - 发表时间:
2011-07-20 - 期刊:
- 影响因子:1.8
- 作者:
Zeyun Xiao;Lu Wang;Xin Zhao;Xi;Zhanting Li - 通讯作者:
Zhanting Li
Acute Genotoxic Stress-Induced Senescence in Human Mesenchymal Cells Drives a Unique Composition of Senescence Messaging Secretome (SMS)
人类间充质细胞中急性基因毒性应激诱导的衰老驱动衰老信息分泌组 (SMS) 的独特组成
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Gaur;Lu Wang;Alex;ra Amaro;M. Dobke;I. Jordan;V. Lunyak - 通讯作者:
V. Lunyak
Reply to: The role of recruitment versus training in influenza-induced lasting changes to alveolar macrophage function
回复:招募与训练在流感引起的肺泡巨噬细胞功能持久变化中的作用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:30.5
- 作者:
Tao Wang;Jinjing Zhang;Lu Wang;Yanling Wang;Ying Li;Yushi Yao - 通讯作者:
Yushi Yao
Genomics-informed insights into microbial degradation of N,N-dimethylformamide
基于基因组学的 N,N-二甲基甲酰胺微生物降解见解
- DOI:
10.1101/2021.03.18.435917 - 发表时间:
2021-03-20 - 期刊:
- 影响因子:0
- 作者:
Junhui Li;P. Dijkstra;Qihong Lu;Shanquan Wang;Shaohua Chen;Deqiang Li;Zhiheng Wang;Zhenglei Jia;Lu Wang;H. Shim - 通讯作者:
H. Shim
Lu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu Wang', 18)}}的其他基金
Conference: Doctoral Consortium at Student Research Workshop at the Annual Meeting of the Association for Computational Linguistics
会议:计算语言学协会年会学生研究研讨会上的博士联盟
- 批准号:
2307288 - 财政年份:2023
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Argument Graph Supported Multi-Level Approach for Argumentative Writing Assistance
论证图支持多层次的议论文写作辅助方法
- 批准号:
2302564 - 财政年份:2023
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
CRII:SCH: Interactive Explainable Deep Survival Analysis
CRII:SCH:交互式可解释深度生存分析
- 批准号:
2245739 - 财政年份:2023
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Entity- and Event-driven Media Bias Detection
协作研究:III:小型:实体和事件驱动的媒体偏差检测
- 批准号:
2127747 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
- 批准号:
2105576 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
- 批准号:
2146997 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
CAREER: Long Document Summarization with Question-Summary Hierarchy and User Preference Control
职业:具有问题摘要层次结构和用户偏好控制的长文档摘要
- 批准号:
2046016 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
- 批准号:
2100885 - 财政年份:2020
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Evaluation of Hypothermic Oxygenated Perfusion Ex-Vivo Heart Perfusion to Expand the Donor Pool and Improve Transplant Outcomes
评估低温氧合灌注离体心脏灌注以扩大供体库并改善移植结果
- 批准号:
MR/V002074/1 - 财政年份:2020
- 资助金额:
$ 20.39万 - 项目类别:
Fellowship
相似国自然基金
外卖平台个性化推荐对用户膳食结构与健康的影响及对策研究
- 批准号:72373115
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于行为因果推理的跨网络用户对齐技术研究
- 批准号:62302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用户生成内容平台系统的联合决策优化研究
- 批准号:72371108
- 批准年份:2023
- 资助金额:43 万元
- 项目类别:面上项目
用户多样化需求驱动下软件即服务厂商定制化策略研究
- 批准号:72301254
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用户友好型高效自适应的机器学习优化算法研究
- 批准号:62376125
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411294 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411296 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411295 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant