Combining Smartphone Light Detection and Ranging with Augmented Reality to Enhance Position-Based Teaching and Learning in STEM
将智能手机光检测和测距与增强现实相结合,增强 STEM 中基于位置的教学
基本信息
- 批准号:2114586
- 负责人:
- 金额:$ 57.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding how to measure, display, and interpret motion is important for many STEM-related careers, particularly in the physical and data sciences. Educational researchers have advocated for numerous approaches to support sense-making with mathematical models of motion, but teachers often struggle to enact them due to limited resources. This project will make high-precision position sensing a reality for anyone who owns a smartphone by building on light-based mobile sensors (LiDAR) that are able to detect one’s distance from objects and location within a space. The educational research will measure the effect of using this new technology to improve student learning and engagement with regard to mathematical models with motion graphs, by producing a classroom-ready application and gamified lessons for teachers and students to use in traditional classrooms as well as the home. Researchers and educational software developers will develop new data visualization technology based on iOS’ scanning LiDAR and Android’s time-of-flight depth imaging. The proposed technological innovation will make use of the novel back-facing infrared beam array to significantly increase precision in position measurements and the placement of augmented reality (AR) visualizations based on users’ movements and environmental data. This project will determine the extent to which LiDAR-aided AR technology can enable high-precision, position-based, and real-time data visualization. It will explore how the new technology can provide the kind of cognitive scaffolding and embodied experiences needed for advancing teaching about modeling motion with graphs and vectors. Research in the learning sciences will entail a collaboration with STEM educators to develop and test the effectiveness of scenarios for exploration in traditional and remote learning contexts. This proposal will assess full-body movement to make sense of motion graphs with a focus on embodied learning and practice with data visualization literacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解如何测量、显示和解释运动对于许多与 STEM 相关的职业非常重要,特别是在物理和数据科学领域。教育研究人员提倡采用多种方法来支持运动数学模型的意义建构,但教师往往很难做到这一点。由于资源有限,该项目将通过基于光的移动传感器(LiDAR)来检测人与物体的距离以及空间内的位置,从而使任何拥有智能手机的人都能实现高精度位置传感。教育研究将衡量通过制作可供教师和学生在传统教室以及家庭中使用的课堂应用程序和游戏化课程,使用这项新技术来提高学生对动态图数学模型的学习和参与度。开发人员将基于 iOS 的扫描激光雷达和 Android 的飞行时间深度成像开发新的数据可视化技术。拟议的技术创新将利用新颖的背面红外光束阵列显着提高位置测量和放置的精度。增强现实(AR)该项目将确定激光雷达辅助 AR 技术能够在多大程度上实现高精度、基于位置的实时数据可视化。学习科学研究需要与 STEM 教育工作者合作,开发和测试传统和远程学习环境中探索场景的有效性。将评估全身运动通过重点可视化体现数据素养的学习和实践来理解动态图。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating learning of motion graphs with a LiDAR-based smartphone application
使用基于 LiDAR 的智能手机应用程序评估运动图的学习
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Megowan-Romanowicz, C.;O’Brien, D. J.;Vieyra, R. E.;Johnson-Glenberg, M.
- 通讯作者:Johnson-Glenberg, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colleen Megowan-Romanowicz其他文献
Colleen Megowan-Romanowicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colleen Megowan-Romanowicz', 18)}}的其他基金
Mapping Fields in Augmented Reality with Personal Mobile Devices: Enhancing Visualization Skills for Education and Industry
使用个人移动设备映射增强现实领域:增强教育和工业的可视化技能
- 批准号:
1822728 - 财政年份:2018
- 资助金额:
$ 57.35万 - 项目类别:
Standard Grant
相似国自然基金
智能手机观测气压:误差订正及其对天气预报的可能影响
- 批准号:42375009
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于柔性集成三电极和智能手机的便携传感平台的构建及其靶向催化磺胺机制研究
- 批准号:32360624
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
问题性手机使用的人工智能干预研究——基于自我决定理论和压力应对理论的双轨机制
- 批准号:82304258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前额叶功能网络“活跃”及兴奋性/抑制性神经递质“失衡”在联结大学生手机依赖增加抑郁风险中的作用
- 批准号:82304169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米酶侧流试纸条结合智能手机快速检测介水病毒
- 批准号:22376112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别:
DS-ARC: A Remote Digital Cognitive Assessment for Down Syndrome-Associated Alzheimer's Disease
DS-ARC:针对唐氏综合症相关阿尔茨海默病的远程数字认知评估
- 批准号:
10638314 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别:
Feasibility of app-delivered circadian synchronization therapy with light in a cohort of pregnant women
应用程序提供的光昼夜节律同步治疗对孕妇队列的可行性
- 批准号:
10823065 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别:
Smartphone-based POC Testing for HIV Using Glowstick Chemistry
基于智能手机的 HIV 使用荧光棒化学进行 POC 测试
- 批准号:
10594143 - 财政年份:2023
- 资助金额:
$ 57.35万 - 项目类别: