Synthetic Control over MOF Particle Growth and Surface Chemistry
MOF 颗粒生长和表面化学的综合控制
基本信息
- 批准号:2114430
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical SummaryMembranes based on metal-organic frameworks (MOFs), which are three-dimensional (3-D) organic/inorganic compounds, attract intense interest for industrial petroleum refining and gas separations due to their exceptional tunability and synthetic diversity. For MOFs to reach widespread attraction and implementation in the industrial sector, however, researchers will be required to go beyond 3-D MOFs and develop new types of MOF nanoparticles, as they exhibit superior separation performance and generate membranes with superior stability. For the past two decades, bulk powders of MOFs occupied the focus of academic MOF research, but very recent attention has turned to preparing MOF nanoparticles and polymer composites with precise control of particle sizes. Despite preliminary demonstrations of the great potential of MOF nanoparticles, key fundamental questions remain for achieving reproducible control over MOF particle composition and for understanding how particle size and composition impact membrane performance. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, Prof. Carl Brozek at the University of Oregon and his research group will investigate the chemical principles that control the precise sizes and compositions of MOF nanocrystals. Mechanistic growth models will be developed in the context of growth models established for other classes of materials so that these results inform the broad field of materials chemistry. Similarly, the synthetic techniques pursued in this proposal will influence materials design beyond MOF particles, by outlining fundamental tools for molecular control over materials across multiple size regimes. The proposed research is practically relevant to society because precise control over MOF nanocrystal sizes will open new frontiers in improved gas separation membranes for industry and the opportunity for elevating MOF application performance to becoming practically relevant. Technical Summary This project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, will investigate the fundamental growth mechanisms of metal-organic framework (MOF) particles, develop methods to control particle surface chemistry for enhancing their colloidal stability and interfacing with polymer composites, and understand the impact of size and surface composition on molecular- and charge-transport properties. Tackling this goal will require basic investigation into the parameters that dictate particle sizes, defect incorporation, and surface functionalization. Insight into controlling prenucleation crystal growth of materials in general, reproducible synthesis of MOF-based heterostructure composites, and improving the practical relevance of MOF materials will result from this research. Broader impacts of this proposal include 1) integrating these research aims into educational outreach initiatives that communicate the science of carbon capture technology to underserved students, 2) fostering interdisciplinary training programs that pairs chemistry with architecture students to design air-purification modules, 3) sponsoring industry-academia seminar series on MOF-based carbon-capture, and 4) implementing a teaching course on designing outreach initiative offered year-round to University of Oregon (UO) chemistry PhD students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要基于金属有机框架 (MOF) 的膜是三维 (3-D) 有机/无机化合物,由于其卓越的可调性和合成多样性,引起了工业石油精炼和气体分离的浓厚兴趣。然而,为了使 MOF 在工业领域获得广泛的关注和应用,研究人员将需要超越 3-D MOF 并开发新型 MOF 纳米颗粒,因为它们表现出卓越的分离性能并生成具有卓越稳定性的膜。在过去的二十年里,MOF 的散装粉末占据了学术界 MOF 研究的焦点,但最近的注意力已经转向制备 MOF 纳米颗粒和精确控制粒径的聚合物复合材料。尽管初步证明了 MOF 纳米颗粒的巨大潜力,但实现对 MOF 颗粒成分的可重复控制以及了解颗粒尺寸和成分如何影响膜性能仍然存在关键的基本问题。在美国国家科学基金会材料研究部固态和材料化学项目的支持下,俄勒冈大学 Carl Brozek 教授及其研究小组将通过该项目研究控制 MOF 纳米晶体精确尺寸和成分的化学原理。 。机械生长模型将在为其他类别材料建立的生长模型的背景下开发,以便这些结果为广泛的材料化学领域提供信息。同样,该提案所追求的合成技术将通过概述跨多种尺寸范围的材料分子控制的基本工具,影响 MOF 颗粒之外的材料设计。拟议的研究与社会实际相关,因为对 MOF 纳米晶体尺寸的精确控制将为工业气体分离膜的改进开辟新领域,并有机会提高 MOF 应用性能,使其变得具有实际意义。技术摘要 该项目得到了 NSF 材料研究部固态和材料化学项目的支持,将研究金属有机骨架 (MOF) 颗粒的基本生长机制,开发控制颗粒表面化学以增强其胶体性能的方法。稳定性和与聚合物复合材料的界面,并了解尺寸和表面组成对分子和电荷传输特性的影响。实现这一目标需要对决定颗粒尺寸、缺陷合并和表面功能化的参数进行基本研究。这项研究将深入了解控制材料的成核前晶体生长、基于 MOF 的异质结构复合材料的可重复合成以及提高 MOF 材料的实际相关性。该提案的更广泛影响包括 1) 将这些研究目标纳入教育推广计划,向服务不足的学生传播碳捕获技术的科学知识,2) 促进跨学科培训计划,将化学与建筑系的学生配对,设计空气净化模块,3) 赞助关于基于 MOF 的碳捕获的行业-学术界研讨会系列,以及 4) 实施全年向俄勒冈大学 (UO) 化学博士生提供的设计推广计划教学课程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Giant Redox Entropy in the Intercalation vs Surface Chemistry of Nanocrystal Frameworks with Confined Pores
有限孔纳米晶体框架插层与表面化学中的巨大氧化还原熵
- DOI:10.1021/jacs.2c12846
- 发表时间:2023
- 期刊:
- 影响因子:15
- 作者:Huang, Jiawei;Marshall, Checkers R.;Ojha, Kasinath;Shen, Meikun;Golledge, Stephen;Kadota, Kentaro;McKenzie, Jacob;Fabrizio, Kevin;Mitchell, James B.;Khaliq, Faiqa
- 通讯作者:Khaliq, Faiqa
Size-Dependent Properties of Solution-Processable Conductive MOF Nanocrystals
- DOI:10.1021/jacs.1c10800
- 发表时间:2022-04-06
- 期刊:
- 影响因子:15
- 作者:Marshall, Checkers R.;Dvorak, Josh P.;Brozek, Carl K.
- 通讯作者:Brozek, Carl K.
Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites
- DOI:10.1021/jacs.1c04808
- 发表时间:2021-08-09
- 期刊:
- 影响因子:15
- 作者:Fabrizio, Kevin;Lazarou, Konstantinos A.;Brozek, Carl K.
- 通讯作者:Brozek, Carl K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carl Brozek其他文献
Carl Brozek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向在轨大型结构的空间机器人多机协同接管控制方法研究
- 批准号:52305036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高速铁路信号控制系统网络安全威胁分析与态势预警研究
- 批准号:62301461
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
温度刺激快速响应自润滑复合陶瓷的构筑及超高温水氧环境磨损主动控制研究
- 批准号:52375215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
柴达木盆地东缘山区古风影沙丘的释光年代学、演化过程与控制因素
- 批准号:42371020
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
- 批准号:62363022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Synthetic control over redox-state and morphology in electronically complex coordination polymers
电子复杂配位聚合物中氧化还原态和形态的合成控制
- 批准号:
2315924 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
A first in human clinical study of TT101, a synthetic immunomodulatory material to build new functional tissue over exposed bone as a one time treatment for diabetic limb preservation patients
TT101 是一种合成免疫调节材料,可在暴露的骨骼上构建新的功能组织,作为糖尿病肢体保留患者的一次性治疗,这是首次进行人体临床研究
- 批准号:
10582523 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
A first in human clinical study of TT101, a synthetic immunomodulatory material to build new functional tissue over exposed bone as a one time treatment for diabetic limb preservation patients
TT101 是一种合成免疫调节材料,可在暴露的骨骼上构建新的功能组织,作为糖尿病肢体保留患者的一次性治疗,这是首次进行人体临床研究
- 批准号:
10326178 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Control over mRNA translation by light-mediated uncaging of synthetic 5΄ caps in combination with fluorescent labeling of mRNAs for in vivo applications
通过合成 5μ 帽的光介导解禁结合体内应用的 mRNA 荧光标记来控制 mRNA 翻译
- 批准号:
426018296 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Priority Programmes
Optogenetic control over transgene expression for the therapy of brain and spine
光遗传学控制转基因表达用于治疗大脑和脊柱
- 批准号:
9255405 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别: