Collaborative Research: Amorphous-Crystalline Switching in Organic-Inorganic Hybrid Semiconductors

合作研究:有机-无机混合半导体中的非晶-晶体转换

基本信息

  • 批准号:
    2114121
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: Hybrid organic-inorganic perovskite (HOIP) semiconductors represent an emerging materials class that offers a unique opportunity to combine and individually tailor desirable characteristics from organic and inorganic systems within a single molecular-scale composite, and such systems already provide outstanding properties for next generation solar cells, light-emitting devices, and photodetectors. Current HOIP research generally focuses on the crystalline state, in which constituent atoms repeat in a periodic and well-ordered fashion. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, Prof. David Mitzi at Duke University and Prof. Michael Toney at the University of Colorado and their research groups will investigate methods to extend beyond the current state-of-the-art in HOIPs to demonstrate and understand how controllable disorder can be introduced within HOIPs through an accessible melt and glass state, and how this disorder can be employed to significantly expand the range of properties for the HOIP family. Such research targets creation of design rules to guide future development of meltable and glass forming HOIPs and to understand how properties of the glass and melt states differ from the crystalline state. Reversible switching between crystalline and glass states, employing small changes in temperature, vastly broadens the prospective application space for HOIPs to include low-power phase-change memory, neuromorphic computing, advanced sensing, and reconfigurable photonics. The research closely connects with education and outreach. Involved undergraduate, graduate and postdoctoral researchers engage with the national labs for structure-property studies, and this experience gets conveyed to the broader student body through an on-going student-oriented energy materials seminar series. Structure-property data for the glasses are made broadly available to the community through a perovskite-focused database, representing the first collection of HOIP glass state data. Project research connects to traditionally underserved STEM communities through an NSF REU, "Nanoscale Detectives -- Elucidating the Structure and Dynamics of Hybrid Perovskite Systems," and through a Pre-Collegiate Development Program that prepares first generation/low-income students from inner-city and rural areas.Technical Description: This project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, combines targeted synthesis, with detailed structure and property characterization for a new class of hybrid organic-inorganic perovskite (HOIP) semiconductors that offers facile access to melt and glassy states, focusing on two key directions. First, the project uses targeted HOIP synthesis using developed design rules for low HOIP melting temperature and prospective glass-crystalline switching, seeking to broaden the family of HOIPs that can effectively access melt/glass states. Successfully created materials are structurally characterized using X-ray/neutron scattering techniques, coupled with extended X-ray absorption fine structure, Raman spectroscopy and rheometry. This intensive characterization captures the extended crystalline and local melt/glass state structures, as well as underlying mechanical properties. Second, while HOIP crystalline state properties are broadly studied and understood, the current project connects HOIP melt and glass local structure with corresponding thermal and optoelectronic properties, studied using differential scanning calorimetry and various optical spectroscopies, targeting a pathway for enhancing and tuning these properties. By exploring fundamental structure-property connections associated with the HOIP melt and glass states, the research seeks to ultimately create a pathway for predictably designing HOIPs with targeted glass and melt state properties, as is increasingly already possible for the crystalline state.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:混合有机-无机钙钛矿(HOIP)半导体代表了一种新兴材料类别,它提供了独特的机会,可以在单个分子级复合材料中组合和单独定制有机和无机系统的所需特性,并且此类系统已经为下一代太阳能电池、发光器件和光电探测器。当前的 HOIP 研究通常集中在晶态,其中组成原子以周期性且有序的方式重复。通过这个项目,在美国国家科学基金会材料研究部固态和材料化学项目的支持下,杜克大学的 David Mitzi 教授和科罗拉多大学的 Michael Toney 教授及其研究小组将研究超越现有技术的方法。 HOIP 中当前最先进的技术,旨在展示和理解如何通过可接近的熔体和玻璃态在 HOIP 中引入可控无序,以及如何利用这种无序来显着扩展 HOIP 家族的性能范围。此类研究的目标是创建设计规则,以指导可熔融和玻璃成型 HOIP 的未来开发,并了解玻璃和熔融状态的特性与结晶状态有何不同。利用温度的微小变化实现晶体态和玻璃态之间的可逆切换,极大地拓宽了 HOIP 的预期应用空间,包括低功耗相变存储器、神经形态计算、先进传感和可重构光子学。该研究与教育和推广密切相关。参与的本科生、研究生和博士后研究人员与国家实验室进行结构性能研究,并通过正在进行的以学生为导向的能源材料研讨会系列将这种经验传达给更广泛的学生群体。通过以钙钛矿为重点的数据库,玻璃的结构-性能数据可以广泛地提供给社区,这代表了 HOIP 玻璃状态数据的第一个集合。项目研究通过 NSF REU“纳米级侦探——阐明混合钙钛矿系统的结构和动力学”以及为来自市中心的第一代/低收入学生做好准备的大学预科发展计划,与传统上服务不足的 STEM 社区建立联系技术描述:该项目得到了 NSF 材料研究部固态和材料化学项目的支持,结合了靶向合成、详细的结构和性能表征,一种新型有机-无机杂化钙钛矿(HOIP)半导体,可以轻松进入熔融态和玻璃态,重点关注两个关键方向。首先,该项目使用针对低 HOIP 熔化温度和预期玻璃晶体转换的开发设计规则进行有针对性的 HOIP 合成,寻求扩大能够有效获得熔融/玻璃态的 HOIP 系列。使用 X 射线/中子散射技术,结合扩展的 X 射线吸收精细结构、拉曼光谱和流变测定法,对成功制造的材料进行结构表征。这种深入的表征捕获了扩展的结晶和局部熔融/玻璃态结构,以及潜在的机械性能。其次,虽然 HOIP 晶态特性得到了广泛的研究和理解,但当前的项目将 HOIP 熔体和玻璃局部结构与相应的热学和光电特性联系起来,使用差示扫描量热法和各种光学光谱进行研究,目标是增强和调整这些特性的途径。通过探索与 HOIP 熔融态和玻璃态相关的基本结构-性能联系,该研究旨在最终创建一条可预测地设计具有目标玻璃态和熔融态性能的 HOIP 的途径,这对于晶态来说已经越来越可能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Toney其他文献

Michael Toney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Toney', 18)}}的其他基金

Reaction Specificity in Pyridoxal Phosphate Enzymes
磷酸吡哆醛酶的反应特异性
  • 批准号:
    1709524
  • 财政年份:
    2017
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323720
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323718
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
  • 批准号:
    2331482
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
  • 批准号:
    2132336
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了