CAREER: Time-Aware Multi-Objective Recommendation in Online Learning Environments

职业:在线学习环境中的时间感知多目标推荐

基本信息

  • 批准号:
    2047500
  • 负责人:
  • 金额:
    $ 54.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Online education is playing an increasingly essential role in workforce training, skill development, and life-long learning. Given the scale of online learning systems and their dependence on student self-regulation, automatic recommendation and instructional tools are crucial for students' success in online education. Ideally, these tools should provide personalized guidance to students to work with the most effective type of learning material (e.g., a problem to solve or a video lecture to watch), at the right time, to efficiently accomplish their personal study goals (e.g., to fulfill their interests or to learn a topic in the shortest time). Current solutions, however, focus on instructing one type of learning activity, ignoring the importance of studying time intervals, and only satisfying one goal for all students. This project will research a new generation of educational recommender systems towards achieving students’ long-term goals by automatically detecting and balancing between their different, potentially conflicting study goals. This project will develop computational models and algorithms that can suggest various types of personalized learning activities and optimally selected study times for students. The resulting solutions will be applicable to machine learning and data mining fields, especially, to long-term utility and time-sensitive recommender systems in domains such as health and fitness. The products of this research will improve the accessibility of online education to better serve underrepresented learners. The findings can be used in the Education domain to improve students' learning. This project includes an integrated teaching plan that facilitates training the next generation of interdisciplinary undergraduate and graduate students in the convergence of Computer Science and Education fields. This project aims to research time-aware, multi-objective, multi-type, personalized educational recommender models and algorithms. The recommender systems designed in this project will be optimizing for students’ long-term learning interests, behavioral preferences, and learning goals. They will be capable of recommending both assessed and non-assessed types of learning materials to students and modeling the best study time intervals for them. The contributions of this project are realized via three research thrusts. In the first thrust, personalized knowledge tracing models, student choice models, and behavioral preference models are designed and integrated to model long-term rewards that facilitate multi-objective recommendations. In the second thrust, the project will investigate multi-type knowledge models and algorithms to suggest both assessed (e.g., problems) and non-assessed (e.g., video lectures) learning materials to students while considering their multiple objectives. The third thrust focuses on a new modality of educational recommender systems by incorporating point process modeling to detect the continuous-time influence between different activities and find the optimal personalized return-to-study time. These research thrusts build upon educational data mining, recommender systems, temporal process modeling, and reinforcement learning literature and extend each of them while contributing actionable insights in student learning processes. To assess the results of this project, a comprehensive evaluation plan is incorporated that includes simulations, offline evaluation on real-world datasets, online integration with live systems, and user studies. The results of this project will be disseminated to the broader Machine Learning, Artificial Intelligence, and Educational Data Mining communities via open-source software and publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在线教育在劳动力培训、技能发展和终身学习中发挥着越来越重要的作用鉴于在线学习系统的规模及其对学生自我调节的依赖,自动推荐和教学工具对于学生在线学习的成功至关重要。理想情况下,这些工具应该为学生提供个性化指导,让他们在正确的时间使用最有效的学习材料(例如,要解决的问题或观看的视频讲座),以有效地实现他们的个人学习目标(例如,为了实现他们的利益或然而,当前的解决方案专注于指导一种类型的学习活动,忽略了学习时间间隔的重要性,并且只满足所有学生的一个目标。该项目将开发计算模型和算法,为学生提供各种类型的个性化学习活动的建议,并为学生选择最佳的学习时间。适用于机器学习和数据挖掘特别是健康和健身等领域的长期效用和时间敏感的推荐系统,将提高在线教育的可及性,以更好地服务于教育领域。该项目包括一个综合教学计划,有助于培养计算机科学和教育领域融合的下一代跨学科本科生和研究生。类型、个性化教育推荐器该项目设计的推荐系统将针对学生的长期学习兴趣、行为偏好和学习目标进行优化,他们将能够向学生推荐评估和非评估类型的学习材料并进行建模。该项目的贡献是通过三个研究重点实现的,即个性化知识追踪模型、学生选择模型和行为偏好模型的设计和集成,以模拟长期奖励。第二个是多目标建议。该项目将研究多种类型的知识模型和算法,以向学生建议评估(例如问题)和非评估(例如视频讲座)学习材料,同时考虑他们的多重目标。通过结合点过程建模来检测不同活动之间的连续时间影响并找到最佳的个性化返回学习时间,这些研究重点建立在教育数据挖掘、推荐系统、时间过程建模和强化学习的基础上。文学和扩展它们中的每一个,同时在学生学习过程中提供可行的见解,为了评估该项目的结果,纳入了一个全面的评估计划,其中包括模拟、对现实世界数据集的离线评估、与实时系统的在线集成以及用户研究结果。该项目的成果将通过开源软件和出版物传播给更广泛的机器学习、人工智能和教育数据挖掘社区。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STRETCH: Stress and Behavior Modeling with Tensor Decomposition of Heterogeneous Data
STRETCH:通过异构数据张量分解进行压力和行为建模
MORS 2022: The Second Workshop on Multi-Objective Recommender Systems
MORS 2022:第二届多目标推荐系统研讨会
Proximity-based educational recommendations: A multi-objective framework
基于邻近性的教育建议:多目标框架
Graph-enhanced multi-activity knowledge tracing
图增强的多活动知识追踪
MORS 2021: 1st Workshop on Multi-Objective Recommender Systems
MORS 2021:第一届多目标推荐系统研讨会
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sherry Sahebi其他文献

Towards Multi-Objective Behavior and Knowledge Modeling in Students
学生的多目标行为和知识建模
MoMENt: Marked Point Processes with Memory-Enhanced Neural Networks for User Activity Modeling
MoMENt:使用记忆增强型神经网络进行用户活动建模的标记点过程
  • DOI:
    10.1145/3649504
  • 发表时间:
    2024-02-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sherry Sahebi;Mengfan Yao;Siqian Zhao;Reza Feyzi
  • 通讯作者:
    Reza Feyzi

Sherry Sahebi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sherry Sahebi', 18)}}的其他基金

CRII: III: Modeling Student Knowledge and Improving Performance when Learning from Multiple Types of Materials
CRII:III:从多种类型的材料中学习时对学生知识进行建模并提高表现
  • 批准号:
    1755910
  • 财政年份:
    2018
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant

相似国自然基金

考虑事件相机时间连续性和数据稀疏性的自主无人系统六自由度位姿估计
  • 批准号:
    62372329
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非线性磁流体空间分数阶模型长时间计算研究
  • 批准号:
    12301516
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
对抗-域适应推断损伤时间的生物特征研究及预测
  • 批准号:
    82302121
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
状态/输出约束下高阶非线性系统的有限时间控制设计与分析
  • 批准号:
    62303263
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
特殊初值下可积方程解的长时间渐近分析:Riemann-Hilbert方法
  • 批准号:
    12371249
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
  • 批准号:
    2238424
  • 财政年份:
    2023
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Standard Grant
CAREER: Enabling grid-aware aggregation and real-time control of distributed energy resources in electric power distribution systems
职业:实现配电系统中分布式能源的网格感知聚合和实时控制
  • 批准号:
    2047306
  • 财政年份:
    2021
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Continuing Grant
Impact of Culturally Aware Mentoring Interventions on Research Mentors and Graduate Training Programs
文化意识指导干预对研究导师和研究生培训项目的影响
  • 批准号:
    10727053
  • 财政年份:
    2019
  • 资助金额:
    $ 54.77万
  • 项目类别:
Impact of Culturally Aware Mentoring Interventions on Research Mentors and Graduate Training Programs
文化意识指导干预对研究导师和研究生培训项目的影响
  • 批准号:
    10204044
  • 财政年份:
    2019
  • 资助金额:
    $ 54.77万
  • 项目类别:
Impact of Culturally Aware Mentoring Interventions on Research Mentors and Graduate Training Programs
文化意识指导干预对研究导师和研究生培训项目的影响
  • 批准号:
    9980440
  • 财政年份:
    2019
  • 资助金额:
    $ 54.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了