Eulerian-Lagrangian Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Kinetics and Fluid Models

非线性动力学和流体模型的欧拉-拉格朗日龙格-库塔不连续伽辽金方法

基本信息

  • 批准号:
    2111253
  • 负责人:
  • 金额:
    $ 30.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The primary goal of the project is the development of new computational methodologies for a wide range of transport-dominant systems in computational fluid dynamics. Methods with large time step sizes are still underdeveloped for kinetic and fluid applications. Theoretical foundations are yet to be established for quantifying the time stepping sizes allowed for stability. There is great potential in further development of methodology for a moving mesh frame and application to moving boundaries and interfaces. This project will further state-of-art computational tools and theoretical analysis and aims to provide avenues for computational simulations that are currently intractable. The project involves training of graduate students through involvement in the research.This project will develop a class of Eulerian-Lagrangian (EL) Discontinuous Galerkin (DG) approaches for linear and nonlinear transport-dominant partial differential equation models. The EL DG method is a generalization of the (semi-Lagrangian) SL DG method for linear advection problems, based on the design of a localized adjoint problem for the test function that approximately tracks characteristics. Such features allow flexibility, especially for high dimensional and nonlinear problems, where characteristics are difficult to track. The errors occurred in approximating characteristics will be integrated in time by Runge-Kutta (RK) methods via the method-of-lines approach. This fully discrete scheme is termed "EL RK DG." When the characteristics are approximated well, the very restrictive CFL constraint in the RK DG framework can be relaxed, leading to CPU savings. The EL RK DG method can be viewed as a general framework generalizing both the classical Eulerian RK DG formulation and the SL DG formulation. Thus, existing research on positivity preserving limiters, well-balanced treatments, asymptotic preserving properties, entropy stability, and error estimates on Eulerian RK DG methods can be potentially generalized to the EL RK DG framework. A key goal is to establish large time-stepping size with nonlinear stability. The project will also explore generalization of the EL DG algorithm to a moving mesh reference frame for tracking material interfaces and moving boundaries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要目标是为计算流体动力学中的各种传输主导系统开发新的计算方法。对于动力学和流体应用,具有大时间步长的方法仍然不完善。用于量化实现稳定性的时间步长大小的理论基础尚未建立。进一步开发移动网格框架的方法及其在移动边界和界面上的应用具有巨大潜力。该项目将进一步发展最先进的计算工具和理论分析,旨在为目前难以处理的计算模拟提供途径。该项目包括通过参与研究来培训研究生。该项目将开发一类欧拉-拉格朗日 (EL) 间断伽辽金 (DG) 方法,用于线性和非线性输运主导的偏微分方程模型。 EL DG 方法是线性平流问题的(半拉格朗日)SL DG 方法的推广,基于近似跟踪特性的测试函数的局部伴随问题的设计。这些功能提供了灵活性,特别是对于特征难以跟踪的高维和非线性问题。近似特性中出现的误差将通过龙格-库塔(RK)方法通过线法方法及时积分。这种完全离散的方案称为“EL RK DG”。当特性近似良好时,可以放宽 RK DG 框架中非常严格的 CFL 约束,从而节省 CPU。 EL RK DG 方法可以被视为概括了经典欧拉 RK DG 公式和 SL DG 公式的通用框架。因此,关于欧拉 RK DG 方法的正性保持限制器、均衡处理、渐近保持特性、熵稳定性和误差估计的现有研究可以潜在地推广到 EL RK DG 框架。一个关键目标是建立具有非线性稳定性的大时间步长。该项目还将探索将 EL DG 算法推广到移动网格参考系,用于跟踪材料界面和移动边界。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations
  • DOI:
    10.1016/j.jcp.2022.111589
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Nakao;Jiajie Chen;Jing-Mei Qiu
  • 通讯作者:
    Joseph Nakao;Jiajie Chen;Jing-Mei Qiu
Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation
Accuracy and Stability Analysis of the Semi-Lagrangian Method for Stiff Hyperbolic Relaxation Systems and Kinetic BGK Model
刚性双曲松弛系统和动力学BGK模型的半拉格朗日方法的精度和稳定性分析
  • DOI:
    10.1137/21m141871x
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Ding, Mingchang;Qiu, Jing-Mei;Shu, Ruiwen
  • 通讯作者:
    Shu, Ruiwen
A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow maps
线性传输和非线性 Vlasov 解及其相关流图的低秩张量表示
  • DOI:
    10.1016/j.jcp.2022.111089
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Guo, Wei;Qiu, Jing-Mei
  • 通讯作者:
    Qiu, Jing-Mei
A Generalized Eulerian-Lagrangian Discontinuous Galerkin Method for Transport Problems
  • DOI:
    10.1016/j.jcp.2022.111160
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xue Hong;Jing-Mei Qiu
  • 通讯作者:
    Xue Hong;Jing-Mei Qiu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing-Mei Qiu其他文献

High-Order Mass-Conservative Semi-Lagrangian Methods for Transport Problems
  • DOI:
    10.1016/bs.hna.2016.06.002
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing-Mei Qiu
  • 通讯作者:
    Jing-Mei Qiu
A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation
一维 BGK 方程的分层一致高阶 DG-IMEX 格式
  • DOI:
    10.1016/j.jcp.2017.01.032
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Tao Xiong;Jing-Mei Qiu
  • 通讯作者:
    Jing-Mei Qiu

Jing-Mei Qiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing-Mei Qiu', 18)}}的其他基金

A High Order Discontinuous Galerkin Multi-Scale Approach for Kinetic-Hydrodynamic Simulations
运动流体动力学模拟的高阶间断伽辽金多尺度方法
  • 批准号:
    1834686
  • 财政年份:
    2018
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Standard Grant
High Order Multi-Scale Numerical Methods for All-Mach Number Flows
全马赫数流的高阶多尺度数值方法
  • 批准号:
    1818924
  • 财政年份:
    2018
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Standard Grant
A High Order Discontinuous Galerkin Multi-Scale Approach for Kinetic-Hydrodynamic Simulations
运动流体动力学模拟的高阶间断伽辽金多尺度方法
  • 批准号:
    1522777
  • 财政年份:
    2015
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Standard Grant
A High Order Semi-Lagrangian Approach for the Vlasov Equation
Vlasov方程的高阶半拉格朗日方法
  • 批准号:
    1217008
  • 财政年份:
    2012
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Standard Grant

相似国自然基金

hypertoric 簇上的辛对偶与量子化Lagrangian对应
  • 批准号:
    12371064
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
拉格朗日视角下南大洋经向翻转环流的全型平衡动力学研究
  • 批准号:
    42376028
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
壁湍流中非球形颗粒取向行为的拉格朗日演化规律研究
  • 批准号:
    12302285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
任意曲型变长柔性体在广义任意拉格朗日-欧拉描述下共旋坐标法研究
  • 批准号:
    12302046
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于拉格朗日拟序结构的气动噪声源识别研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
  • 批准号:
    24K07680
  • 财政年份:
    2024
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
  • 批准号:
    EP/Y021479/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Research Grant
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
  • 批准号:
    EP/Y006712/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Fellowship
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
  • 批准号:
    2305392
  • 财政年份:
    2023
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
  • 批准号:
    2319494
  • 财政年份:
    2023
  • 资助金额:
    $ 30.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了