CAREER: Fast Linear Algebra: Algorithms and Fundamental Limits
职业:快速线性代数:算法和基本限制
基本信息
- 批准号:2046235
- 负责人:
- 金额:$ 57.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computational Linear Algebra is the study of algorithms for solving mathematical problems involving matrices and other linear-algebraic objects. It is one of the oldest and most practically applicable subfields of algorithms research. Linear-algebraic routines lie at the core of many large-scale scientific and engineering simulations, signal-processing methods, statistical- and machine-learning algorithms, and beyond. Recently, the field has been revolutionized by work on algorithms that make carefully chosen random choices during the course of their execution, allowing much faster approximate solutions for very large-scale problems. This project aims to build on the success of these randomized methods and extend their reach. The work will also identify fundamental limits on the potential for faster algorithms and on today's most popular techniques. Beyond impact in the above mentioned application areas, the project will deepen the theoretical foundations of computational linear algebra and strengthen ties to theoretical computer science, approximation theory, optimization, machine learning, and other fields. The work is interdisciplinary in nature, and will be complemented with curriculum development focused on preparing students with an interdisciplinary mathematical and computing toolkit.The project breaks down into three main thrusts. The first will consider the computational complexity of fundamental linear-algebraic problems, which is not well understood. In the process, the work will explore the role of randomization and approximation in fast linear algebra and endow the field with missing complexity-theoretic structure to guide algorithmic progress. The second thrust will focus on algorithms and lower bounds within the restricted matrix-vector query model of linear-algebraic computation. This model encompasses a large fraction of known approaches, and the project aims to both explain its dominance in practice, and to develop new algorithmic tools. Finally, the third thrust will focus on applying randomized methods to structured matrix problems arising in machine learning, signal processing, and beyond. Randomized methods have led to breakthroughs for computation on general unstructured matrices, but their potential in solving structured problems is under-explored. The project will address this gap, broadening the practical impact of randomized methods, and strengthening theoretical connections to diverse areas of computer science and applied mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算线性代数是对解决涉及矩阵和其他线性代数对象的数学问题的算法的研究。它是算法研究中最古老、最实用的子领域之一。线性代数例程是许多大规模科学和工程模拟、信号处理方法、统计和机器学习算法等的核心。最近,该领域因算法工作而发生了革命性的变化,这些算法在执行过程中做出精心选择的随机选择,从而为非常大规模的问题提供更快的近似解决方案。该项目旨在以这些随机方法的成功为基础,并扩大其影响范围。这项工作还将确定更快算法和当今最流行技术的潜力的基本限制。除了对上述应用领域的影响之外,该项目还将深化计算线性代数的理论基础,并加强与理论计算机科学、逼近论、优化、机器学习和其他领域的联系。这项工作本质上是跨学科的,并将辅以课程开发,重点是为学生准备跨学科的数学和计算工具包。该项目分为三个主要目标。第一个将考虑基本线性代数问题的计算复杂性,目前尚不清楚。在此过程中,这项工作将探索随机化和近似在快速线性代数中的作用,并赋予该领域缺失的复杂性理论结构来指导算法的进展。第二个重点将集中于线性代数计算的受限矩阵向量查询模型内的算法和下界。该模型包含大部分已知方法,该项目旨在解释其在实践中的主导地位,并开发新的算法工具。最后,第三个重点将侧重于将随机方法应用于机器学习、信号处理等领域中出现的结构化矩阵问题。随机方法在一般非结构化矩阵的计算方面取得了突破,但其解决结构化问题的潜力尚未得到充分开发。该项目将解决这一差距,扩大随机方法的实际影响,并加强与计算机科学和应用数学不同领域的理论联系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和应用程序进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kernel Interpolation with Sparse Grids
稀疏网格的核插值
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Yadav, Mohit;Sheldon, Daniel;Musco, Cameron
- 通讯作者:Musco, Cameron
Faster Kernel Matrix Algebra via Density Estimation.
通过密度估计更快的核矩阵代数。
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Backurs, Arturs;Indyk, Piotr;Musco, Cameron;Wagner, Tal.
- 通讯作者:Wagner, Tal.
Active Linear Regression for Lp Norms and Beyond
Lp 范数及以上的主动线性回归
- DOI:10.1109/focs54457.2022.00076
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Musco, Cameron;Musco, Christopher;Woodruff, David P.;Yasuda, Taisuke
- 通讯作者:Yasuda, Taisuke
Optimal Sketching Bounds for Sparse Linear Regression
稀疏线性回归的最佳草图边界
- DOI:10.48550/arxiv.2304.02261
- 发表时间:2023-04-05
- 期刊:
- 影响因子:0
- 作者:Tung Mai;Ale;er Munteanu;er;Cameron Musco;Anup B. Rao;Chris Schwiegelshohn;David P. Woodruff
- 通讯作者:David P. Woodruff
Near-Linear Sample Complexity for Lp Polynomial Regression
Lp 多项式回归的近线性样本复杂度
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Meyer, Raphael;Musco, Cameron;Musco, Christopher;Woodruff, David P.;Zhou, Samson
- 通讯作者:Zhou, Samson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cameron Musco其他文献
Near-Linear Sample Complexity for $L_p$ Polynomial Regression
$L_p$ 多项式回归的近线性样本复杂度
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
R. A. Meyer;Cameron Musco;Christopher Musco;David P. Woodruff;Samson Zhou - 通讯作者:
Samson Zhou
Eigenvector Computation and Community Detection in Asynchronous Gossip Models
异步八卦模型中的特征向量计算和社区检测
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Frederik Mallmann;Cameron Musco;Christopher Musco - 通讯作者:
Christopher Musco
Stability of the Lanczos Method for Matrix Function Approximation
矩阵函数逼近Lanczos方法的稳定性
- DOI:
10.1137/1.9781611975031.105 - 发表时间:
2017-08-25 - 期刊:
- 影响因子:0
- 作者:
Cameron Musco;Christopher Musco;Aaron Sidford - 通讯作者:
Aaron Sidford
Low-Rank Approximation from Communication Complexity
通信复杂性的低阶近似
- DOI:
- 发表时间:
2019-04-22 - 期刊:
- 影响因子:0
- 作者:
Cameron Musco;Christopher Musco;David P. Woodruff - 通讯作者:
David P. Woodruff
Faster Spectral Sparsification in Dynamic Streams
动态流中更快的光谱稀疏化
- DOI:
- 发表时间:
2019-03-28 - 期刊:
- 影响因子:0
- 作者:
M. Kapralov;A. Mousavifar;Cameron Musco;Christopher Musco;Navid Nouri - 通讯作者:
Navid Nouri
Cameron Musco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST和SKA先导阵搜索高银纬脉冲星并研究其垂直银盘分布
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用FAST脉冲星观测检验引力理论
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10784562 - 财政年份:2023
- 资助金额:
$ 57.12万 - 项目类别:
Intraoperative Nerve Damage Assessment Using Nerve-Specific Fluorescence Guided Surgery
使用神经特异性荧光引导手术进行术中神经损伤评估
- 批准号:
10482087 - 财政年份:2022
- 资助金额:
$ 57.12万 - 项目类别:
Fast and fine: NLP methods for near real-time and fine-grained overdose surveillance
快速而精细:用于近实时和细粒度过量监测的 NLP 方法
- 批准号:
10590000 - 财政年份:2022
- 资助金额:
$ 57.12万 - 项目类别:
A non-linear fast model predictive control algorithm for spacecraft rendezvous and docking in the presence of a colliding object.
一种非线性快速模型预测控制算法,用于在存在碰撞物体的情况下航天器交会对接。
- 批准号:
565137-2021 - 财政年份:2021
- 资助金额:
$ 57.12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
A non-linear fast model predictive control algorithm for spacecraft rendezvous and docking in the presence of a colliding object.
一种非线性快速模型预测控制算法,用于在存在碰撞物体的情况下航天器交会对接。
- 批准号:
565137-2021 - 财政年份:2021
- 资助金额:
$ 57.12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's