Optimization Methods for Nonconvex Structured Optimization
非凸结构化优化的优化方法
基本信息
- 批准号:2110722
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will advance fundamental algorithmic theory and software tools for solving optimization problems with wide applications in science, engineering and industry. Specifically, the project will be in the area of structured nonconvex nonlinear optimization, a critical component in many modern applications ranging from signal/image processing, real-time optimal control to stochastic learning. The project aims to develop algorithms with focus on the following features: speed, problem dependence, and ease of use for researchers in both optimization and computational data science community. Students will be involved and will have opportunities for interdisciplinary research. Software will be developed.This project will develop theoretically strong and numerically efficient algorithms as well as the software for solving nonconvex structured optimization. These algorithms will solve the subproblems inexactly with guaranteed global convergence as well as feature an optimal computational complexity when the problem features convexity structure. The algorithms will be based on recent work on proximal and stochastic gradient methods for structured composite minimization, inexact alternating direction multiplier methods (ADMM) for separable convex/nonconvex optimization and active set methods for polyhedral constrained optimization. In addition, second-order techniques for accelerating the convergence will be also explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将推进基本算法理论和软件工具,以解决科学,工程和行业中广泛应用的优化问题。具体而言,该项目将位于结构化的非凸非线性优化的领域,这是许多现代应用程序中的关键组件,从信号/图像处理,实时最佳控制到随机学习。该项目旨在开发算法,重点关注以下功能:速度,问题依赖性以及优化和计算数据科学界的研究人员的易用性。学生将参与其中,并有跨学科研究的机会。将开发软件。此项目将开发理论上强,有效的算法,以及用于求解非convex结构化优化的软件。这些算法将通过保证的全局收敛来解决子问题,并在问题具有凸结构时具有最佳的计算复杂性。该算法将基于用于结构化复合最小化的近端和随机梯度方法的最新工作,用于可分离的凸/非凸优化和主动设置方法,用于多面体约束优化。此外,还将探讨用于加速融合的二阶技术。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得支持的。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Asymptotic Convergence and Acceleration of Gradient Methods
- DOI:10.1007/s10915-021-01685-8
- 发表时间:2019-08
- 期刊:
- 影响因子:2.5
- 作者:Yakui Huang;Yuhong Dai;Xinwei Liu;Hongchao Zhang
- 通讯作者:Yakui Huang;Yuhong Dai;Xinwei Liu;Hongchao Zhang
On the acceleration of the Barzilai–Borwein method
论 BarzilaiâªBorwein 方法的加速
- DOI:10.1007/s10589-022-00349-z
- 发表时间:2020-01
- 期刊:
- 影响因子:2.2
- 作者:Yakui Huang;Yu-Hong Dai;Xin-Wei Liu;Hongchao Zhang
- 通讯作者:Hongchao Zhang
An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems
- DOI:10.1007/s10957-022-02152-6
- 发表时间:2022-12
- 期刊:
- 影响因子:1.9
- 作者:Jingyong Tang;Jinchuan Zhou;Hongchao Zhang
- 通讯作者:Jingyong Tang;Jinchuan Zhou;Hongchao Zhang
Convergence on a symmetric accelerated stochastic ADMM with larger stepsizes
- DOI:10.4208/csiam-am.so-2021-0021
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Jianchao Bai;Deren Han;Hao Sun;Hongchao Zhang
- 通讯作者:Jianchao Bai;Deren Han;Hao Sun;Hongchao Zhang
Unified linear convergence of first-order primal-dual algorithms for saddle point problems
鞍点问题一阶原对偶算法的统一线性收敛
- DOI:10.1007/s11590-021-01832-y
- 发表时间:2022-01
- 期刊:
- 影响因子:1.6
- 作者:Fan Jiang;Zhongming Wu;Xingju Cai;Hongchao Zhang
- 通讯作者:Hongchao Zhang
共 8 条
- 1
- 2
Hongchao Zhang其他文献
A data-driven method to predict future bottlenecks in a remanufacturing system with multi-variant uncertainties
一种数据驱动的方法来预测具有多变量不确定性的再制造系统中的未来瓶颈
- DOI:10.1007/s11771-022-4906-z10.1007/s11771-022-4906-z
- 发表时间:2022-012022-01
- 期刊:
- 影响因子:4.4
- 作者:Zheng Xue;Tao Li;Shitong Peng;Chaoyong Zhang;Hongchao ZhangZheng Xue;Tao Li;Shitong Peng;Chaoyong Zhang;Hongchao Zhang
- 通讯作者:Hongchao ZhangHongchao Zhang
The experimental criteria for judging the maximum bubble radius of laser-iduced bubble in different ambient pressures
不同环境压力下激光诱导气泡最大气泡半径判断的实验标准
- DOI:10.1109/iceoe.2011.601304610.1109/iceoe.2011.6013046
- 发表时间:20112011
- 期刊:
- 影响因子:0
- 作者:Bei;Hongchao Zhang;Jian Lu;X. NiBei;Hongchao Zhang;Jian Lu;X. Ni
- 通讯作者:X. NiX. Ni
“Using Fuzzy Multi-Agent Decision Making in Environmentally Conscious Supplier Management”
“在环保供应商管理中使用模糊多代理决策”
- DOI:10.1016/s0007-8506(07)60607-610.1016/s0007-8506(07)60607-6
- 发表时间:20032003
- 期刊:
- 影响因子:0
- 作者:Hongchao Zhang;Jianzhi Li;M. E. MerchantHongchao Zhang;Jianzhi Li;M. E. Merchant
- 通讯作者:M. E. MerchantM. E. Merchant
Simplified indicator for assessing flow velocity by simulation
通过模拟评估流速的简化指标
- DOI:10.1117/12.220105310.1117/12.2201053
- 发表时间:20152015
- 期刊:
- 影响因子:3.9
- 作者:Jialin Liu;Hongchao Zhang;Z. Shen;Jian Lu;X. NiJialin Liu;Hongchao Zhang;Z. Shen;Jian Lu;X. Ni
- 通讯作者:X. NiX. Ni
Structural Characteristics of Vessels in Three Families of Cycadopsida
苏铁纲三个科导管的结构特征
- DOI:
- 发表时间:20102010
- 期刊:
- 影响因子:0
- 作者:Yu;W. Liao;X. Zhong;L. Wei;Hongchao Zhang;Yuanan LuYu;W. Liao;X. Zhong;L. Wei;Hongchao Zhang;Yuanan Lu
- 通讯作者:Yuanan LuYuanan Lu
共 70 条
- 1
- 2
- 3
- 4
- 5
- 6
- 14
Hongchao Zhang的其他基金
Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
- 批准号:23095492309549
- 财政年份:2023
- 资助金额:$ 15万$ 15万
- 项目类别:Standard GrantStandard Grant
Inexact Optimization Methods for Structured Nonlinear Optimization
结构化非线性优化的不精确优化方法
- 批准号:18191611819161
- 财政年份:2018
- 资助金额:$ 15万$ 15万
- 项目类别:Standard GrantStandard Grant
Acceleration Techniques for Lower-Order Algorithms in Nonlinear Optimization
非线性优化中低阶算法的加速技术
- 批准号:15226541522654
- 财政年份:2015
- 资助金额:$ 15万$ 15万
- 项目类别:Standard GrantStandard Grant
The Analysis and Design of Gradient Methods for Large-Scale Nonlinear Optimization and Applications
大规模非线性优化的梯度法分析与设计及应用
- 批准号:10162041016204
- 财政年份:2010
- 资助金额:$ 15万$ 15万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
地下水超采区承压含水层系统时序InSAR监测方法
- 批准号:42374013
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于深度学习方法的南海海气耦合延伸期智能预报研究
- 批准号:42375143
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肝癌外周血测序数据中循环肿瘤DNA占比的精确解耦方法研究
- 批准号:62303271
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于矩阵方法的电价博弈分析与控制策略研究
- 批准号:62303170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
- 批准号:516700-2018516700-2018
- 财政年份:2020
- 资助金额:$ 15万$ 15万
- 项目类别:Postgraduate Scholarships - DoctoralPostgraduate Scholarships - Doctoral
Effective Algorithms for Structured Nonconvex Optimization Based on First- and Second-Order Methods and Convex Relaxations
基于一阶、二阶方法和凸松弛的结构化非凸优化的有效算法
- 批准号:24450892445089
- 财政年份:2020
- 资助金额:$ 15万$ 15万
- 项目类别:StudentshipStudentship
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
- 批准号:516700-2018516700-2018
- 财政年份:2019
- 资助金额:$ 15万$ 15万
- 项目类别:Postgraduate Scholarships - DoctoralPostgraduate Scholarships - Doctoral
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
- 批准号:516700-2018516700-2018
- 财政年份:2018
- 资助金额:$ 15万$ 15万
- 项目类别:Postgraduate Scholarships - DoctoralPostgraduate Scholarships - Doctoral
AF: Small: New classes of optimization methods for nonconvex large scale machine learning models.
AF:小型:非凸大规模机器学习模型的新型优化方法。
- 批准号:16187171618717
- 财政年份:2016
- 资助金额:$ 15万$ 15万
- 项目类别:Standard GrantStandard Grant