GOALI: From heat to spin to electricity: Fundamental understanding and development of high-performance spin-driven thermoelectric heterostructures

目标:从热到自旋到电:高性能自旋驱动热电异质结构的基本理解和开发

基本信息

  • 批准号:
    2110603
  • 负责人:
  • 金额:
    $ 44.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Thermoelectric materials can generate electricity in the presence of a temperature difference or work in a reverse mode providing cooling when an electric current is passed through the material. The thermoelectric technology, which used to be primarily based on alloys of bismuth telluride for Peltier cooling modules, or silicon-germanium for radioisotope thermoelectric generators used in NASA spacecraft, has expanded over the last two decades to a wide range of materials for power generation, cooling, or infrared detection and imaging applications. Power generation from low-grade heat sources, such as waste heat at industry, ambient heat, buildings, or body heat, has particularly taken much attention. Waste heat recovery can significantly reduce the use of fossil fuels and help prevent a worldwide energy crisis. As such, thermoelectric materials research is currently an area of intense research. Until now, most of the efforts and progress have been on the direct conversion of heat into electricity, with the progress approaching a plateau. This proposal investigates an alternate route based on converting heat into the thermal fluctuation of magnetization that can, in turn, convert into electricity. This approach offers a parallel path to boost energy conversion efficiency, leading to a promising direction towards low-cost, high efficiency, and versatile thermoelectric technology.The project team plans to design and synthesize a new class of thermoelectric materials that can overcome the fundamental limits imposed by Fermi-Dirac statistics on charge carriers by utilizing paramagnons - bosonic quasi-particles that can play as a new independent variable not limited to the counter-balancing nature of the parameters that enter zT. Just as in the discovery of the spin-Seebeck effect, which led to the new area of spincaloritronics, where the spin angular momentum is transferred to the electrons, the project team designs materials where the local thermal fluctuations of magnetization in the paramagnetic state (i.e., paramagnons) transfer their linear momentum to electrons and increase the thermopower. The proposal envisions three major thrusts: (i) understand the physics of electron-paramagnon interactions and identify the key material parameters through multiscale modeling, (ii) design multi-phase magnetic materials and synthesize them based on the theoretical understandings and the available experimental data, (iii) synthesize such materials, characterize and study them, and provide feedback to the design procedure for optimization. The emphasis will be placed on engineering these effects and designing high-performance commercially scalable compounds. This transdisciplinary work will open a new way to design high-performance thermoelectrics. At the same time, the study proposed here will provide data and information critical to studying the dynamics of short-lived local magnetic order, which is now at the forefront of the development of spin-dynamic theories in general.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热电材料可以在存在温差的情况下发电,或者以反向模式工作,当电流通过材料时提供冷却。热电技术过去主要基于用于珀耳帖冷却模块的碲化铋合金,或用于美国宇航局航天器中使用的放射性同位素热电发电机的硅锗合金,在过去二十年中已扩展到广泛的发电材料,冷却或红外检测和成像应用。利用工业废热、环境热、建筑物或体热等低品位热源发电尤其受到关注。废热回收可以显着减少化石燃料的使用,并有助于防止全球能源危机。因此,热电材料研究是目前的热门研究领域。到目前为止,大部分的努力和进展都集中在将热能直接转化为电能上,进展已接近平台期。该提案研究了一种基于将热量转化为磁化热波动的替代途径,而磁化强度的热波动又可以转化为电能。这种方法提供了提高能量转换效率的并行途径,为低成本、高效率和多功能热电技术提供了一个有前途的方向。项目团队计划设计和合成一类能够克服基本限制的新型热电材料费米-狄拉克统计通过利用顺磁振子(玻色子准粒子)对载流子施加影响,它可以作为新的自变量,而不仅限于输入 zT 的参数的平衡性质。正如自旋塞贝克效应的发现导致了自旋热电子学的新领域,即自旋角动量转移到电子,项目团队设计的材料在顺磁状态下(即磁化强度的局部热波动)。 ,顺磁振子)将其线性动量转移给电子并增加热电势。该提案设想了三个主要目标:(i)了解电子-顺磁振子相互作用的物理原理并通过多尺度建模确定关键材料参数,(ii)设计多相磁性材料并根据理论理解和可用的实验数据进行合成,(iii)合成此类材料,对其进行表征和研究,并向设计过程提供反馈以进行优化。重点将放在工程这些效应和设计高性能商业规模化合物上。这项跨学科的工作将为设计高性能热电材料开辟一条新途径。同时,这里提出的研究将为研究短寿命局域磁序动力学提供至关重要的数据和信息,该动力学目前处于自旋动力学理论发展的最前沿。该奖项反映了 NSF 的法定使命通过使用基金会的智力价值和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cooperative Pseudo Jahn Teller distortion derives phase transitions in bismuth oxide
协同伪 Jahn Teller 畸变导致氧化铋中的相变
  • DOI:
    10.1016/j.matchemphys.2023.127534
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Dsouza, Kelvin;Vashaee, Daryoosh
  • 通讯作者:
    Vashaee, Daryoosh
Understanding and design of spin-driven thermoelectrics
  • DOI:
    10.1016/j.xcrp.2021.100614
  • 发表时间:
    2021-11-17
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Polash, Md Mobarak Hossain;Moseley, Duncan;Vashaee, Daryoosh
  • 通讯作者:
    Vashaee, Daryoosh
Unlocking the Potential of Hexagonal Boron Sheets: Giant Improvements in Thermal Conductivity and Mechanics through Molybdenum Intercalation
  • DOI:
    10.1016/j.mtphys.2023.101012
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    11.5
  • 作者:
    M. Alidoosti;D. N. Esfahani;Shahram Yalameha;D. Vashaee
  • 通讯作者:
    M. Alidoosti;D. N. Esfahani;Shahram Yalameha;D. Vashaee
Coupling Light in Ion-Exchanged Waveguides by Silver Nanoparticle-Based Nanogratings: Manipulating the Refractive Index of Waveguides
  • DOI:
    10.1021/acsanm.2c00438
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Maedeh Aslani;Razieh Talebi;D. Vashaee
  • 通讯作者:
    Maedeh Aslani;Razieh Talebi;D. Vashaee
Cd-doping effects in Ni–Mn–Sn: experiment and ab-initio study
  • DOI:
    10.1088/1361-6463/ac5f33
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Ghazinezhad;P. Kameli;A. Ghotbi Varzaneh;A. Sarsari;M. Norouzi-Inallu;T. Amiri;D. Salazar
  • 通讯作者:
    Z. Ghazinezhad;P. Kameli;A. Ghotbi Varzaneh;A. Sarsari;M. Norouzi-Inallu;T. Amiri;D. Salazar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daryoosh Vashaee其他文献

Daryoosh Vashaee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daryoosh Vashaee', 18)}}的其他基金

IUCRC Planning Grant North Carolina State University: Center for Interface Sciences for Emerging Devices & Systems (CISEDS)
IUCRC 规划拨款北卡罗来纳州立大学:新兴设备接口科学中心
  • 批准号:
    2209891
  • 财政年份:
    2022
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
A Novel Three-Dimensional Thin-film Thermoelectric Generator for Wearable Applications
用于可穿戴应用的新型三维薄膜热电发电机
  • 批准号:
    1711253
  • 财政年份:
    2017
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
Rational Design of Thermoelectric Materials and Material Processing Approaches Based on Microwave Processing of Silicides
基于硅化物微波加工的热电材料及材料加工方法的合理设计
  • 批准号:
    1522513
  • 财政年份:
    2014
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
CAREER: Material Design and Research Oriented Multidisciplinary Education: Amorphous to Nanocrystalline Electronic Materials with Applications to Thermoelectrics
职业:面向材料设计和研究的多学科教育:非晶到纳米晶电子材料及其在热电中的应用
  • 批准号:
    1351533
  • 财政年份:
    2014
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
Rational Design of Thermoelectric Materials and Material Processing Approaches Based on Microwave Processing of Silicides
基于硅化物微波加工的热电材料及材料加工方法的合理设计
  • 批准号:
    1363485
  • 财政年份:
    2014
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
CAREER: Material Design and Research Oriented Multidisciplinary Education: Amorphous to Nanocrystalline Electronic Materials with Applications to Thermoelectrics
职业:面向材料设计和研究的多学科教育:非晶到纳米晶电子材料及其在热电中的应用
  • 批准号:
    1515005
  • 财政年份:
    2014
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant
Thermal Transport and Energy Conversion in Thermoelectric Nanocomposite Materials
热电纳米复合材料中的热传输和能量转换
  • 批准号:
    0933763
  • 财政年份:
    2009
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Standard Grant

相似国自然基金

旋转热湍流中离心力对湍流结构和输运特性影响的研究
  • 批准号:
    12232010
  • 批准年份:
    2022
  • 资助金额:
    290 万元
  • 项目类别:
    重点项目
磁性功能梯度旋转壳体结构磁热弹耦合动力学及电磁控制理论研究
  • 批准号:
    12172321
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
热环境下航空发动机旋转叶片组耦合振动及局部化损伤成因研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
基于湿-热-弹本构和刚柔耦合理论的变桨旋转风力机叶片动力学特性研究
  • 批准号:
    11902002
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
纳米流体轴向旋转热管砂轮成型磨削弧区换热机理研究
  • 批准号:
    51905275
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Leg heat therapy to improve functional performance in peripheral artery disease
腿部热疗可改善外周动脉疾病的功能表现
  • 批准号:
    10444199
  • 财政年份:
    2022
  • 资助金额:
    $ 44.5万
  • 项目类别:
Leg heat therapy to improve functional performance in peripheral artery disease
腿部热疗可改善外周动脉疾病的功能表现
  • 批准号:
    10619639
  • 财政年份:
    2022
  • 资助金额:
    $ 44.5万
  • 项目类别:
Development of micro thermal transport probe for heat management using quantum spin systems
使用量子自旋系统开发用于热管理的微型热传输探针
  • 批准号:
    22K03950
  • 财政年份:
    2022
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnon-phonon hybridization in nearly compensated magnets for thermoelecric conversion and heat control
近补偿磁体中的磁子-声子杂化用于热电转换和热控制
  • 批准号:
    20K05297
  • 财政年份:
    2020
  • 资助金额:
    $ 44.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Triage mechanisms for directing protein refolding and degradation
指导蛋白质重折叠和降解的分类机制
  • 批准号:
    10462587
  • 财政年份:
    2018
  • 资助金额:
    $ 44.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了