Collaborative Research: Quantum-Coherent Interactions between Free and Guided Electrons and Photons

合作研究:自由电子和引导电子与光子之间的量子相干相互作用

基本信息

  • 批准号:
    2110556
  • 负责人:
  • 金额:
    $ 42.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

General audience abstract:When a stream of electrons in free space passes over a patterned surface, light is produced. Over the past century, scientists and engineers have used this process to power applications ranging from satellite communications to microwave ovens. Although these electron-driven light sources have proven successful in numerous applications, some of the microscopic, quantum physics underlying these sources has remained poorly understood. As a result, we do not yet know the fundamental limits of this technique. In this project, the detailed, quantum-mechanical nature of the interactions between free-space electrons, patterned (or structured) surfaces, and light waves will be uncovered. Specifically, in this work, single electrons, traveling through vacuum over specially designed surfaces patterned at the nanometer length scale, will be used to generate single photons; and the resulting interconnected, so-called entangled, quantum states will be studied. The findings from this work could impact emerging applications in quantum computing, quantum communication, and quantum sensing by providing efficient, low-noise, and tunable sources of single electrons and single photons, as well as sources of unique quantum states of photons. Beyond the broader scientific impact of this work, this program will also contribute to the training of undergraduate and graduate researchers. Additionally, the effort will include summer internships for high-school students and develop a student-led seminar series that will improve the mentoring, organizational, and leadership skills of the students supported by this program.Technical audience abstract:When low-energy free electrons (few to tens of keV) interact with nanostructured materials, electromagnetic radiation, from the terahertz to the visible domain, can be produced. Recently, researchers have investigated the quantum-coherent nature of free electrons after interacting with classical light in the vicinity of nanoscale objects and surfaces. In this project the complete quantum nature of the interactions between free electrons, light, and nanostructured materials will be explored. Specifically single electrons will generate single photons via an interaction mediated by tailormade nanostructures, and the quantum-coherent properties of the electrons and photons will be experimentally probed. The project will consist of four experimental efforts: (1) The study of the coupling of single photons to a passing free electron and the use of this coupling for the development of heralded single-photon and single-electron sources; (2) The investigation of the quantum coherence of this single-photon-single-electron coupling by using multiple interaction structures for the generation of Bell states; (3) The extension of the quantum-coherent electron-photon interaction via nanostructured electron-beam waveguides in which quantum efficiencies approaching and exceeding unity should be achievable; and (4) The study of multiple photon-generation interactions in this high-efficiency regime within guided electron beam systems to generate both isolated and entangled sets of large-photon-number Fock states. This work will lead to advanced free-electron and photon sources for quantum information science and technology and quantum-enhanced free-electron and optical metrology. The ability to use photons to herald electron arrival would enable shot-noise-free electron sources for low-dose electron microscopy, improved electron beam lithography, and quantum-enhanced free-electron metrology. Furthermore, the quantum-coherent electron-photon interactions studied in this work may additionally provide a viable path for the compact generation of highly-entangled photon states.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通观众摘要:当自由空间中的电子流通过图案的表面传递时,会产生光。在过去的一个世纪中,科学家和工程师使用此过程来为从卫星通信到微波炉烤箱提供动力。尽管这些电子驱动的光源在许多应用中已被证明是成功的,但是这些来源的一些微观,量子物理学的理解仍然很少。结果,我们尚不知道该技术的基本限制。在这个项目中,将发现自由空间电子,图案化(或结构化)表面和光波之间相互作用的详细,量子力学性质。具体而言,在这项工作中,单电子通过真空穿过特殊设计的表面,以纳米长度刻度图案化,用于生成单个光子。将研究由此产生的互连,所谓的纠缠,量子状态。这项工作的发现可能会影响量子计算,量子通信和量子传感中的新兴应用,通过提供单电子和单个光子的有效,低噪声和可调源,以及光子的独特量子状态的来源。除了这项工作的更广泛的科学影响外,该计划还将有助于对本科和研究生研究人员的培训。此外,这项努力将包括针对高中生的暑期实习,并开发一个由学生领导的研讨会系列,该系列将提高该计划支持的学生的指导,组织和领导能力。技术受众摘要:当低能源的电子(少数KEV)与纳米结构的材料,电子磁性辐射相互作用时,可以从terahertz上互动,从而可以从事terahertz的互动,从而可以从事terahertz,从而可以与Terahertz相互作用。最近,研究人员研究了在纳米级对象和表面附近与经典光相互作用后,自由电子的量子量子性质。在这个项目中,将探索自由电子,光和纳米结构材料之间相互作用的完整量子性质。特定的单电子将通过型型纳米结构介导的相互作用产生单光子,并且将对电子和光子的量子辅助性能进行实验探测。该项目将包括四个实验努力:(1)研究单光子与传递电子电子的耦合以及该耦合的使用来开发预示的单光子和单电子源; (2)通过使用多个相互作用结构来生成钟形状态,研究了这种单光子单电子耦合的量子相干性; (3)通过纳米结构的电子束波导扩展量子辅导电子 - 光子的相互作用,其中应达到量子效率接近和超过统一的量子; (4)研究在具有指导电子束系统中这种高效机制中多个光子生成相互作用的研究,以生成孤立的和纠缠的大photon-number fock状态。这项工作将导致量子信息科学和技术以及量子增强的自由电子和光学计量学的高级自由电子和光子源。将光子用于先驱电子到达的能力将使低剂量电子显微镜,改进的电子束光刻和量子增强的自由电子计量能够实现无射击电子源。此外,这项工作中研究的量子相互作用的量子相互作用可能还可以为紧凑的高度输入光子状态的紧凑产生提供可行的途径。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来获得的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subwavelength-Modulated Waveguides for Phase-matching Photons and Low-Energy Electrons
用于相位匹配光子和低能电子的亚波长调制波导
  • DOI:
    10.1364/cleo_fs.2023.fw3c.6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ates, Omer Emre;Putnam, William P.
  • 通讯作者:
    Putnam, William P.
Applications in Microscopy and Lithography for a Heralded Electron Source
预示电子源在显微镜和光刻中的应用
Electron-Photon Interactions in a Scanning Electron Microscope
扫描电子显微镜中的电子-光子相互作用
  • DOI:
    10.1109/ivnc57695.2023.10188999
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simonaitis, John W.;Krielaart, Maurice A.;Koppell, Stewart A.;Slayton, Benjamin J.;Alongi, Joseph;Putnam, William P.;Berggren, Karl K.;Keathley, Phillip D.
  • 通讯作者:
    Keathley, Phillip D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Putnam其他文献

William Putnam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Putnam', 18)}}的其他基金

CAREER: Chip-Scale, Field-Resolved Detection of Mid-Infrared Light
职业:中红外光的芯片级场分辨检测
  • 批准号:
    2048263
  • 财政年份:
    2021
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

量子启发的复合语义视频实例检索技术研究
  • 批准号:
    62372339
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
层间耦合强化对转角双层过渡金属硫化物的量子物态调控研究
  • 批准号:
    12304540
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
彭罗斯准晶中强关联量子多体系统的蒙特卡罗研究
  • 批准号:
    12304171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于时域分辨的单个量子点的双激子结合能研究
  • 批准号:
    62305201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了