Collaborative Research: Quantum-Coherent Interactions between Free and Guided Electrons and Photons

合作研究:自由电子和引导电子与光子之间的量子相干相互作用

基本信息

  • 批准号:
    2110556
  • 负责人:
  • 金额:
    $ 42.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

General audience abstract:When a stream of electrons in free space passes over a patterned surface, light is produced. Over the past century, scientists and engineers have used this process to power applications ranging from satellite communications to microwave ovens. Although these electron-driven light sources have proven successful in numerous applications, some of the microscopic, quantum physics underlying these sources has remained poorly understood. As a result, we do not yet know the fundamental limits of this technique. In this project, the detailed, quantum-mechanical nature of the interactions between free-space electrons, patterned (or structured) surfaces, and light waves will be uncovered. Specifically, in this work, single electrons, traveling through vacuum over specially designed surfaces patterned at the nanometer length scale, will be used to generate single photons; and the resulting interconnected, so-called entangled, quantum states will be studied. The findings from this work could impact emerging applications in quantum computing, quantum communication, and quantum sensing by providing efficient, low-noise, and tunable sources of single electrons and single photons, as well as sources of unique quantum states of photons. Beyond the broader scientific impact of this work, this program will also contribute to the training of undergraduate and graduate researchers. Additionally, the effort will include summer internships for high-school students and develop a student-led seminar series that will improve the mentoring, organizational, and leadership skills of the students supported by this program.Technical audience abstract:When low-energy free electrons (few to tens of keV) interact with nanostructured materials, electromagnetic radiation, from the terahertz to the visible domain, can be produced. Recently, researchers have investigated the quantum-coherent nature of free electrons after interacting with classical light in the vicinity of nanoscale objects and surfaces. In this project the complete quantum nature of the interactions between free electrons, light, and nanostructured materials will be explored. Specifically single electrons will generate single photons via an interaction mediated by tailormade nanostructures, and the quantum-coherent properties of the electrons and photons will be experimentally probed. The project will consist of four experimental efforts: (1) The study of the coupling of single photons to a passing free electron and the use of this coupling for the development of heralded single-photon and single-electron sources; (2) The investigation of the quantum coherence of this single-photon-single-electron coupling by using multiple interaction structures for the generation of Bell states; (3) The extension of the quantum-coherent electron-photon interaction via nanostructured electron-beam waveguides in which quantum efficiencies approaching and exceeding unity should be achievable; and (4) The study of multiple photon-generation interactions in this high-efficiency regime within guided electron beam systems to generate both isolated and entangled sets of large-photon-number Fock states. This work will lead to advanced free-electron and photon sources for quantum information science and technology and quantum-enhanced free-electron and optical metrology. The ability to use photons to herald electron arrival would enable shot-noise-free electron sources for low-dose electron microscopy, improved electron beam lithography, and quantum-enhanced free-electron metrology. Furthermore, the quantum-coherent electron-photon interactions studied in this work may additionally provide a viable path for the compact generation of highly-entangled photon states.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通观众摘要:当自由空间中的电子流经过有图案的表面时,就会产生光。在过去的一个世纪中,科学家和工程师利用这一过程为从卫星通信到微波炉的各种应用提供动力。尽管这些电子驱动光源已在众多应用中被证明是成功的,但这些光源背后的一些微观量子物理学仍然知之甚少。因此,我们还不知道该技术的基本限制。在这个项目中,将揭示自由空间电子、图案化(或结构化)表面和光波之间相互作用的详细量子力学本质。具体来说,在这项工作中,单电子在真空中穿过专门设计的纳米长度尺度图案的表面,将用于产生单光子;并将研究由此产生的相互关联的、所谓纠缠的量子态。这项工作的发现可能会通过提供高效、低噪声和可调谐的单电子和单光子源以及独特的光子量子态源来影响量子计算、量子通信和量子传感领域的新兴应用。除了这项工作更广泛的科学影响之外,该计划还将有助于本科生和研究生研究人员的培训。此外,这项工作还将包括为高中生提供暑期实习,并开发一个由学生主导的研讨会系列,以提高该计划支持的学生的指导、组织和领导技能。技术受众摘要:当低能自由电子(几到几十keV)与纳米结构材料相互作用,可以产生从太赫兹到可见域的电磁辐射。最近,研究人员研究了自由电子在纳米级物体和表面附近与经典光相互作用后的量子相干性质。在这个项目中,将探索自由电子、光和纳米结构材料之间相互作用的完整量子性质。具体来说,单电子将通过定制纳米结构介导的相互作用产生单光子,并且将通过实验探测电子和光子的量子相干特性。该项目将包括四项实验工作:(1)研究单光子与通过的自由电子的耦合,以及利用这种耦合来开发预示的单光子和单电子源; (2) 通过使用多重相互作用结构产生贝尔态来研究这种单光子-单电子耦合的量子相干性; (3) 通过纳米结构电子束波导扩展量子相干电子-光子相互作用,其中量子效率接近和超过1是可以实现的; (4) 研究引导电子束系统中这种高效状态下的多个光子发生相互作用,以产生孤立和纠缠的大光子数福克态集。这项工作将为量子信息科学技术以及量子增强自由电子和光学计量带来先进的自由电子和光子源。使用光子预示电子到达的能力将使低剂量电子显微镜的无散粒噪声电子源、改进的电子束光刻和量子增强自由电子计量成为可能。此外,这项工作中研究的量子相干电子-光子相互作用可能还为高度纠缠光子态的紧凑生成提供了一条可行的途径。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subwavelength-Modulated Waveguides for Phase-matching Photons and Low-Energy Electrons
用于相位匹配光子和低能电子的亚波长调制波导
  • DOI:
    10.1364/cleo_fs.2023.fw3c.6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ates, Omer Emre;Putnam, William P.
  • 通讯作者:
    Putnam, William P.
Applications in Microscopy and Lithography for a Heralded Electron Source
预示电子源在显微镜和光刻中的应用
Electron-Photon Interactions in a Scanning Electron Microscope
扫描电子显微镜中的电子-光子相互作用
  • DOI:
    10.1109/ivnc57695.2023.10188999
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simonaitis, John W.;Krielaart, Maurice A.;Koppell, Stewart A.;Slayton, Benjamin J.;Alongi, Joseph;Putnam, William P.;Berggren, Karl K.;Keathley, Phillip D.
  • 通讯作者:
    Keathley, Phillip D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Putnam其他文献

William Putnam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Putnam', 18)}}的其他基金

CAREER: Chip-Scale, Field-Resolved Detection of Mid-Infrared Light
职业:中红外光的芯片级场分辨检测
  • 批准号:
    2048263
  • 财政年份:
    2021
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无经典信道高效连续变量量子密钥分发技术研究
  • 批准号:
    62371060
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
可控掺杂小带隙硫化铅量子点薄膜及同质结光电二极管研究
  • 批准号:
    62304085
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
基于微区光电性能测量技术的红光微型量子点发光二极管尺寸缩小失效机制研究
  • 批准号:
    12374385
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于时域分辨的单个量子点的双激子结合能研究
  • 批准号:
    62305201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 42.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了