Novel Methods for Numerical Simulation of Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值模拟的新方法
基本信息
- 批准号:2110407
- 负责人:
- 金额:$ 33.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many types of waves propagate through inhomogeneous media, such as light waves propagating in the air, where the particle density depends on the height of the atmospheric layers, acoustic waves propagating in the water, where the salinity depends on the ocean depth, or seismic waves propagating in the earth, where the density of geological layers varies depending on their sedimentation history. The scientific thrust of this project is devoted to the development of numerical simulation tools for wave propagation in anisotropic and inhomogeneous media. The principal application targeted is wave propagation in aeroacoustics to study the noise generated by a turbo-reactor in a flow, where the source of inhomogeneity and anisotropy is the non-uniform air flow around the engine. Yet the methods considered will also apply to other variable material properties such as permittivity or sound speed.This project is concerned with the further development of a class of Trefftz-like methods. Trefftz methods rely, in broad terms, on the idea of approximating solutions to partial differential equations using local basis functions, which are exact solutions of the governing equation, making explicit use of information about the ambient medium. Instead, the new methods rely on basis functions that are approximate solutions of the governing equation rather than exact solutions. The PI therefore refers to such methods as quasi-Trefftz methods. The goal of this project is two-fold: (1) investigate the properties of the quasi-Trefftz methods when using a high-order local basis; (2) investigate numerical integration techniques for the corresponding basis functions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多类型的波浪通过异质媒体传播,例如在空气中传播的光波,粒子密度取决于大气层的高度,在水中传播的声波,在水中,盐度取决于海洋深度或地震波在地球中传播的地震波,在地球的密度中,依赖于其泥沙的密度依赖于它们的密度依赖于它们的沉积物的历史。该项目的科学推力致力于开发各向异性和不均匀媒体中波传播的数值模拟工具。针对性的主要应用是航空声学中的波传播,以研究涡轮反应器在流动中产生的噪声,其中不均匀性和各向异性的来源是发动机周围的不均匀气流。然而,所考虑的方法也将适用于其他可变材料属性,例如介电常数或声速。该项目与类似Trefftz的方法的进一步开发有关。 TREFFTZ方法在广义上依赖于使用局部基础函数将解决方案近似偏微分方程的想法,这些函数是管理方程的确切解决方案,从而明确使用了有关环境介质的信息。取而代之的是,新方法依赖于近似管理方程的解决方案而不是精确解决方案的基础函数。因此,PI是指诸如准特夫兹方法之类的方法。该项目的目的是两个方面:(1)使用高阶局部基础时研究准特性方法的属性; (2)研究相应基础函数的数值集成技术。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Lise-Marie Imbert-...的其他基金
Advances in Numerical Methods for Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值方法的进展
- 批准号:21054872105487
- 财政年份:2020
- 资助金额:$ 33.48万$ 33.48万
- 项目类别:Standard GrantStandard Grant
Advances in Numerical Methods for Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值方法的进展
- 批准号:18187471818747
- 财政年份:2018
- 资助金额:$ 33.48万$ 33.48万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
- 批准号:42376190
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
双区域自然对流耦合模型的高效数值方法研究
- 批准号:12361077
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
水平井控水完井多重耦合精细数值模拟与优化设计方法
- 批准号:52374055
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
钻爆法海底隧道上覆岩体灾变机理与演化过程数值模拟方法研究
- 批准号:52309135
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Stokes界面问题非拟合压力鲁棒数值方法与理论分析
- 批准号:12301469
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
BCC for Prostate Cancer: Discovery and Translation of Biomarkers for Clinical Unmet Needs
前列腺癌的 BCC:发现和转化生物标志物以满足临床未满足的需求
- 批准号:1070124510701245
- 财政年份:2023
- 资助金额:$ 33.48万$ 33.48万
- 项目类别:
Development of a panel of multiplex biomarkers for the early detection of pancreatic ductal adenocarcinoma and high-risk lesions
开发一组多重生物标志物,用于早期检测胰腺导管腺癌和高危病变
- 批准号:1064240910642409
- 财政年份:2023
- 资助金额:$ 33.48万$ 33.48万
- 项目类别:
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:23096262309626
- 财政年份:2023
- 资助金额:$ 33.48万$ 33.48万
- 项目类别:Continuing GrantContinuing Grant
Immune control and genomic instability at micronuclei
微核的免疫控制和基因组不稳定性
- 批准号:1054474710544747
- 财政年份:2022
- 资助金额:$ 33.48万$ 33.48万
- 项目类别:
Quantitative Analyses of HER2 Upregulation in Luminal Breast Cancer in Response to Neoadjuvant Endocrine Therapy
新辅助内分泌治疗对管腔乳腺癌 HER2 上调的定量分析
- 批准号:1037306310373063
- 财政年份:2021
- 资助金额:$ 33.48万$ 33.48万
- 项目类别: