CAREER: Knowledge-Rich Neural Text Comprehension and Reasoning
职业:知识丰富的神经文本理解和推理
基本信息
- 批准号:2044660
- 负责人:
- 金额:$ 54.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Enormous amounts of ever-changing knowledge are available online in diverse textual styles (e.g., news vs. science text) and diverse formats (knowledge bases vs. web pages vs. textual documents). This proposal addresses the question of textual comprehension and reasoning given this diversity: how can artificial intelligence (AI) help applications comprehend and combine evidence from variable, evolving sources of textual knowledge to make complex inferences and draw logical conclusions? Recent advances in deep learning algorithms, large-scale datasets, and industry-scale computational resources are spurring progress in many Natural Language Processing (NLP) tasks, including question answering. Nevertheless, current models lack the ability to answer complex questions that require them to reason intelligently across diverse sources and explain their decisions. Further, these models cannot scale up when task-annotated training data are scarce and computational resources are limited. Our results will give rise to the next generation of question answering and fact checking algorithms that offer rich natural language comprehension using multi-hop and interpretable reasoning even when annotated training data is scarce. With a focus on textual comprehension and reasoning, this research will integrate capabilities of symbolic AI approaches into current deep learning algorithms. It will devise hybrid, interpretable algorithms that understand and reason about textual knowledge across varied formats and styles, generalize to emerging domains with scarce training data (are robust), and operate efficiently under resource limitations (are scalable). Toward this end, this research will focus on four transformative research initiatives: (1) defining a general-purpose formalism to promote data comprehension through knowledge-rich neural representations, (2) devising an interpretable, multi-hop inference and reasoning engine, (3) developing robust and scalable algorithms to demonstrate generalizable domain and device adaptation, and (4) building applications and datasets in question answering and fact checking tasks that will have lasting general-purpose utility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大量不断变化的知识可以以不同的文本风格(例如,新闻与科学文本)和不同的格式(知识库、网页与文本文档)在线获取。鉴于这种多样性,该提案解决了文本理解和推理的问题:人工智能(AI)如何帮助应用程序理解和组合来自可变的、不断演变的文本知识来源的证据,以做出复杂的推理并得出逻辑结论? 深度学习算法、大规模数据集和行业规模计算资源的最新进展正在推动许多自然语言处理 (NLP) 任务(包括问答)的进步。然而,当前的模型缺乏回答复杂问题的能力,这些问题需要它们对不同来源进行智能推理并解释其决策。 此外,当任务注释的训练数据稀缺且计算资源有限时,这些模型无法扩展。我们的研究结果将催生下一代问答和事实检查算法,即使在带注释的训练数据稀缺的情况下,也可以使用多跳和可解释推理来提供丰富的自然语言理解。 这项研究以文本理解和推理为重点,将符号人工智能方法的功能集成到当前的深度学习算法中。它将设计混合的、可解释的算法,能够理解和推理不同格式和风格的文本知识,推广到训练数据稀缺的新兴领域(稳健),并在资源限制下高效运行(可扩展)。为此,本研究将重点关注四项变革性研究举措:(1)定义通用形式主义,通过知识丰富的神经表示来促进数据理解,(2)设计可解释的多跳推理和推理引擎,( 3) 开发强大且可扩展的算法来展示可推广的领域和设备适应,以及 (4) 在问答和事实检查任务中构建具有持久通用实用性的应用程序和数据集。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-Instruct: Aligning Language Models with Self-Generated Instructions
自指导:使语言模型与自生成的指令保持一致
- DOI:10.48550/arxiv.2212.10560
- 发表时间:2022-12-20
- 期刊:
- 影响因子:0
- 作者:Yizhong Wang;Yeganeh Kordi;Swaroop Mishra;Alisa Liu;Noah A. Smith;Daniel Khashabi;Hannaneh Hajishirzi
- 通讯作者:Hannaneh Hajishirzi
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Rainier:用于常识问答的强化知识内省器
- DOI:10.48550/arxiv.2210.03078
- 发表时间:2022-10-06
- 期刊:
- 影响因子:0
- 作者:Jiacheng Liu;Skyler Hallinan;Ximing Lu;Pengfei He;S. Welleck;Hannaneh Hajishirzi;Yejin Choi
- 通讯作者:Yejin Choi
Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
Super-NaturalInstructions:通过 1600 个 NLP 任务的声明性指令进行泛化
- DOI:10.18653/v1/2022.emnlp-main.340
- 发表时间:2022-04-16
- 期刊:
- 影响因子:0
- 作者:Yizhong Wang;Swaroop Mishra;Pegah Alipoormolabashi;Yeganeh Kordi;Amirreza Mirzaei;Anjana Arunkumar;Arjun Ashok;Arut Selvan Dhanasekaran;Atharva Naik;David Stap;Eshaan Pathak;Giannis Karamanolakis;H. Lai;I. Purohit;Ishani Mondal;Jacob Anderson;Kirby Kuznia;Krima Doshi;Maitreya Patel;Kuntal Kumar Pal;M. Moradshahi;Mihir Parmar;Mirali Purohit;Neeraj Varshney;Phani Rohitha Kaza;Pulkit Verma;Ravsehaj Singh Puri;Rushang Karia;Shailaja Keyur Sampat;Savan Doshi;Siddhartha Mishra;Sujan Reddy;Sumanta Patro;Tanay Dixit;Xudong Shen;Chitta Baral;Yejin Choi;Noah A. Smith;Hannaneh Hajishirzi;Daniel Khashabi
- 通讯作者:Daniel Khashabi
Task-aware Retrieval with Instructions
带指令的任务感知检索
- DOI:10.48550/arxiv.2211.09260
- 发表时间:2022-11-16
- 期刊:
- 影响因子:0
- 作者:Akari Asai;Timo Schick;Patrick Lewis;Xilun Chen;Gautier Izacard;Sebastian Riedel;Hannaneh Hajishirzi;Wen
- 通讯作者:Wen
InSCIt : Information-Seeking Conversations with Mixed-Initiative Interactions
InSCIt:具有混合主动交互的信息寻求对话
- DOI:10.1162/tacl_a_00559
- 发表时间:2023-05
- 期刊:
- 影响因子:10.9
- 作者:Wu, Zeqiu;Parish, Ryu;Cheng, Hao;Min, Sewon;Ammanabrolu, Prithviraj;Ostendorf, Mari;Hajishirzi, Hannaneh
- 通讯作者:Hajishirzi, Hannaneh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanna Hajishirzi其他文献
OLMo: Accelerating the Science of Language Models
OLMo:加速语言模型科学的发展
- DOI:
10.48550/arxiv.2402.00838 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:0
- 作者:
Dirk Groeneveld;Iz Beltagy;Pete Walsh;Akshita Bhagia;Rodney Kinney;Oyvind Tafjord;A. Jha;Hamish Ivison;Ian Magnusson;Yizhong Wang;Shane Arora;David Atkinson;Russell Authur;Khyathi Raghavi Ch;u;u;Arman Cohan;Jennifer Dumas;Yanai Elazar;Yuling Gu;Jack Hessel;Tushar Khot;William Merrill;Jacob Daniel Morrison;Niklas Muennighoff;Aakanksha Naik;Crystal Nam;Matthew E. Peters;Valentina Pyatkin;Abhilasha Ravich;er;er;Dustin Schwenk;Saurabh Shah;Will Smith;Emma Strubell;Nishant Subramani;Mitchell Wortsman;Pradeep Dasigi;Nathan Lambert;Kyle Richardson;Luke Zettlemoyer;Jesse Dodge;Kyle Lo;Luca Soldaini;Noah A. Smith;Hanna Hajishirzi - 通讯作者:
Hanna Hajishirzi
Husky: A Unified, Open-Source Language Agent for Multi-Step Reasoning
Husky:用于多步推理的统一开源语言代理
- DOI:
- 发表时间:
2024-06-10 - 期刊:
- 影响因子:0
- 作者:
Joongwon Kim;Bhargavi Paranjape;Tushar Khot;Hanna Hajishirzi - 通讯作者:
Hanna Hajishirzi
Why are NLP Models Fumbling at Elementary Math? A Survey of Automatic Word Problem Solvers
为什么 NLP 模型在初等数学上表现不佳?
- DOI:
10.48550/arxiv.2212.09561 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Karl Cobbe;V. Kosaraju;Mo Bavarian;Jacob Hilton;Reiichiro Nakano;Chris Hesse;J. Devlin;Ming;Kenton Lee;Robert Geirhos;J. Jacobsen;Richard Michaelis;Wiel;Zemel;Brendel;Matthias Bethge;Felix A. Wichmann;Mohammad Javad Hosseini;Hanna Hajishirzi;Bugeun Kim;Kyung Seo Ki;Donggeon Lee;Rik Koncel;Subhro Roy;Aida Amini;Nate Kushman;Yoav Artzi;Luke Zettlemoyer;Shen;Chao;Keh;Shuai Peng;Ke Yuan;Liangcai Gao;Zhi Tang;Jeffrey Pennington;R. Socher;Matthew E. Peters;Mohit Iyyer Matt Mark Neumann;Christopher Gardner;Kenton Clark;Lee Luke;Piotr Pi˛ekos;M. Malinowski - 通讯作者:
M. Malinowski
Getting it Right: Improving Spatial Consistency in Text-to-Image Models
正确做法:提高文本到图像模型的空间一致性
- DOI:
10.48550/arxiv.2404.01197 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:0
- 作者:
Agneet Chatterjee;Gabriela Ben‐Melech Stan;Estelle Aflalo;Sayak Paul;Dhruba Ghosh;Tejas Gokhale;Ludwig Schmidt;Hanna Hajishirzi;Vasudev Lal;Chitta Baral;Yezhou Yang - 通讯作者:
Yezhou Yang
Data Engineering for Scaling Language Models to 128K Context
将语言模型扩展到 128K 上下文的数据工程
- DOI:
10.48550/arxiv.2402.10171 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:0
- 作者:
Yao Fu;Rameswar P;a;a;Xinyao Niu;Xiang Yue;Hanna Hajishirzi;Yoon Kim;Hao Peng - 通讯作者:
Hao Peng
Hanna Hajishirzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanna Hajishirzi', 18)}}的其他基金
IIS: RI: Travel Proposal: Student Travel Support for the 2019 Association for Computational Linguistics Student Research Workshop
IIS:RI:旅行提案:2019 年计算语言学协会学生研究研讨会的学生旅行支持
- 批准号:
1929269 - 财政年份:2019
- 资助金额:
$ 54.98万 - 项目类别:
Standard Grant
III: Medium: Learning Multimodal Knowledge about Entities and Events
III:媒介:学习有关实体和事件的多模态知识
- 批准号:
1703166 - 财政年份:2017
- 资助金额:
$ 54.98万 - 项目类别:
Standard Grant
RI: Small: Learning to Read, Ground, and Reason in Multimodal Text
RI:小:学习多模态文本中的阅读、基础和推理
- 批准号:
1616112 - 财政年份:2016
- 资助金额:
$ 54.98万 - 项目类别:
Standard Grant
EAGER: Generating and Understanding Narratives for Dynamic Environments
EAGER:生成和理解动态环境的叙述
- 批准号:
1352249 - 财政年份:2013
- 资助金额:
$ 54.98万 - 项目类别:
Standard Grant
相似国自然基金
数据与知识融合驱动的晶圆图缺陷生成式检测模型研究
- 批准号:52375485
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向小样本教育场景的学生知识追踪方法研究
- 批准号:62307006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向开放式地理模拟的WRF模拟知识表达与共享研究
- 批准号:42371425
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
知识引导的面向多模态地质数据的复杂实体及关系精准抽取
- 批准号:42301492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据-机理-知识融合的随机场景电网前瞻调度智能决策研究
- 批准号:52377092
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Decoding Structural Determinants of Efficacy and Specificity in a GPCR Subfamily
解码 GPCR 亚家族中功效和特异性的结构决定因素
- 批准号:
10572310 - 财政年份:2023
- 资助金额:
$ 54.98万 - 项目类别:
Fibrosis, inflammation, and osteophyte formation in post-traumatic osteoarthritis
创伤后骨关节炎中的纤维化、炎症和骨赘形成
- 批准号:
10570315 - 财政年份:2023
- 资助金额:
$ 54.98万 - 项目类别:
Modulation of Herpes Simplex Virus Pathogenesis by Leucine Rich Repeat Kinase 2
富含亮氨酸重复激酶 2 对单纯疱疹病毒发病机制的调节
- 批准号:
10300301 - 财政年份:2021
- 资助金额:
$ 54.98万 - 项目类别:
Modulation of Herpes Simplex Virus Pathogenesis by Leucine Rich Repeat Kinase 2
富含亮氨酸重复激酶 2 对单纯疱疹病毒发病机制的调节
- 批准号:
10427420 - 财政年份:2021
- 资助金额:
$ 54.98万 - 项目类别:
Modulation of Herpes Simplex Virus Pathogenesis by Leucine Rich Repeat Kinase 2
富含亮氨酸重复激酶 2 对单纯疱疹病毒发病机制的调节
- 批准号:
10608136 - 财政年份:2021
- 资助金额:
$ 54.98万 - 项目类别: