CAREER: Engineering Interfacial Flows and Instabilities in Solidifying Liquids

职业:工程界面流动和凝固液体的不稳定性

基本信息

  • 批准号:
    2042930
  • 负责人:
  • 金额:
    $ 53.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Patterns are ubiquitous in nature. Examples range from the regular coils that form when honey is poured onto toast to the orderly arrangement of dewdrops on a spiderweb. These structures originate from fluid mechanical instabilities, which have been thoroughly studied in the context of pure liquids, e.g. water and oil. In the real world, fluid dynamical systems are however often more complex; for example, latex starts as a viscous liquid but transitions to rubber when cured. The goal of this CAREER project is to further our fundamental understanding of fluid flows in the context of solidifying liquids. Specifically, the project will investigate fluidic instabilities in curable elastomers and the solids they eventually form. This newly gained understanding will be leveraged to develop new fabrication pathways akin to 3D printing. While this project could have a broad economic impact, the research will also provide educational opportunities for high school, undergraduate, and graduate students, with focus on broadening participation of students from underrepresented groups. In particular, arresting flows with curing will be used to give tangible forms to abstract concepts in fluid mechanics. Manipulating these physical objects will enrich the students experience and ignite their interest in STEAM. This CAREER award will support experiments carried out with curable elastomers and development of theoretical models to further our understanding of the interfacial fluid mechanics of solidifying liquids. Due to favorable downscaling with length, capillary effects are dominant for submillimetric objects and play a key role in a number of engineering and natural processes. As such, interfacial effects have been widely researched, albeit primarily in Newtonian fluids. In particular, the interplay between hydrodynamics, solidification and the morphology of the solids formed when arresting interfacial flows remains poorly understood. Additionally, interfacial instabilities are often studied close to threshold, such that our understanding of nonlinear pattern formation in these systems is sparse. In this project, the investigators will significantly advance engineering science by studying the physics of viscous jets and films in curable polymers and by elucidating the shape-flow coupling in these systems. The project capitalizes on stability analysis and will help revive this area of great fundamental and educational importance by providing a rich and largely unexplored class of problems at the confluence of mechanics and material science. Novel experiments involving the use of templates will be developed to rationalize nonlinear pattern selection and self-assembly in these systems. The new fundamental knowledge gained in the project will help solve the so-called inverse problem: finding the optimal set of initial conditions and interactions that lead a flow of solidifying liquid to form a target shape, a feat that could spark the development of new fabrication methodologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模式在自然界中无处不在。例子包括从将蜂蜜倒在吐司上时形成的规则线圈到蜘蛛网上有序排列的露珠。这些结构源于流体机械不稳定性,已在纯液体(例如液体)的背景下进行了深入研究。水和油。然而,在现实世界中,流体动力系统通常更为复杂。例如,乳胶一开始是粘性液体,但固化后会转变为橡胶。这个职业项目的目标是加深我们对凝固液体背景下的流体流动的基本理解。具体来说,该项目将研究可固化弹性体及其最终形成的固体中的流体不稳定性。新获得的理解将被用来开发类似于 3D 打印的新制造途径。虽然该项目可能产生广泛的经济影响,但该研究还将为高中生、本科生和研究生提供教育机会,重点是扩大代表性不足群体学生的参与。特别是,通过固化阻止流动将用于为流体力学中的抽象概念提供有形的形式。操作这些物理对象将丰富学生的体验并激发他们对 STEAM 的兴趣。该职业奖将支持使用可固化弹性体进行的实验和理论模型的开发,以进一步了解凝固液体的界面流体力学。由于随着长度的有利缩小,毛细管效应在亚毫米物体中占主导地位,并在许多工程和自然过程中发挥着关键作用。因此,界面效应已被广泛研究,尽管主要是在牛顿流体中。特别是,流体动力学、凝固和阻止界面流动时形成的固体形态之间的相互作用仍然知之甚少。此外,界面不稳定性的研究通常接近阈值,因此我们对这些系统中非线性图案形成的理解很少。在该项目中,研究人员将通过研究可固化聚合物中的粘性射流和薄膜的物理学以及阐明这些系统中的形状-流动耦合,显着推进工程科学。该项目利用稳定性分析,通过提供力学和材料科学交汇处的丰富且很大程度上未经探索的问题,将有助于复兴这一具有重要基础和教育重要性的领域。将开发涉及使用模板的新颖实验,以使这些系统中的非线性模式选择和自组装合理化。该项目中获得的新基础知识将有助于解决所谓的逆问题:找到初始条件和相互作用的最佳组合,使凝固液体流形成目标形状,这一壮举可能会激发新制造的发展该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soft Deployable Structures via Core-Shell Inflatables
通过核壳充气装置的软可展开结构
  • DOI:
    10.1103/physrevlett.130.128201
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jones, Trevor J.;Dupuis, Thomas;Jambon;Marthelot, Joel;Brun, P.
  • 通讯作者:
    Brun, P.
Instability mediated self-templating of drop crystals
不稳定性介导的水滴晶体自模板化
  • DOI:
    10.1126/sciadv.abq0828
  • 发表时间:
    2022-07-08
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Cai, Lingzhi;Marthelot, Joel;Brun, P.
  • 通讯作者:
    Brun, P.
Interfacial flows past arrays of elastic fibers
界面流过弹性纤维阵列
  • DOI:
    10.1103/physrevfluids.8.044001
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Ushay, C.;Jambon;Brun, P.
  • 通讯作者:
    Brun, P.
Bubble casting soft robotics
气泡铸造软体机器人
  • DOI:
    10.1038/s41586-021-04029-6
  • 发表时间:
    2021-11-01
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Trevor J. Jones;E. Jambon;J. Marthelot;P. Brun
  • 通讯作者:
    P. Brun
Formation of Pixelated Elastic Films via Capillary Suction of Curable Elastomers in Templated Hele–Shaw Cells
在模板化 Hele Shaw 细胞中通过毛细管吸入可固化弹性体形成像素化弹性薄膜
  • DOI:
    10.1002/adma.202109682
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Badaoui, Mohamed;Kresge, Grace;Ushay, Christopher;Marthelot, Joel;Brun, P. ‐T.
  • 通讯作者:
    Brun, P. ‐T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pierre-Thomas Brun其他文献

Pierre-Thomas Brun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pierre-Thomas Brun', 18)}}的其他基金

Mechanics of Elastoactive Structures
弹性活性结构力学
  • 批准号:
    2343539
  • 财政年份:
    2024
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Standard Grant

相似国自然基金

水合共晶体系准欠电位镁沉积/溶解异质界面工程及热/动力学调控机制研究
  • 批准号:
    52371216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于工程化益生菌的肠道脂质Pickering界面转化及肥胖干预研究
  • 批准号:
    82304352
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
界面分子工程构筑高效稳定的DJ-2D/3D杂化钙钛矿太阳能电池
  • 批准号:
    52363026
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
面向苛刻环境Ga2O3场效应晶体管的自组装单分子层界面工程
  • 批准号:
    62304167
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图案化光阳极的全域电场调控、界面工程及光解水性能研究
  • 批准号:
    52373277
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Interfacial Engineering and Additive Printing of Flexible Thermoelectric Materials
职业:柔性热电材料的界面工程和增材印刷
  • 批准号:
    2238996
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Standard Grant
Magneto-patterned cartilage constructs for improved osteochondral integration
磁图案软骨结构可改善骨软骨整合
  • 批准号:
    10395420
  • 财政年份:
    2021
  • 资助金额:
    $ 53.99万
  • 项目类别:
Resorbable, Phsophorylated Poly(ester urea) Surgical Adhesive to Enhance Fracture Healing
可吸收的磷酸化聚(酯脲)手术粘合剂可促进骨折愈合
  • 批准号:
    10474458
  • 财政年份:
    2021
  • 资助金额:
    $ 53.99万
  • 项目类别:
Resorbable, Phsophorylated Poly(ester urea) Surgical Adhesive to Enhance Fracture Healing
可吸收的磷酸化聚(酯脲)手术粘合剂可促进骨折愈合
  • 批准号:
    10283703
  • 财政年份:
    2021
  • 资助金额:
    $ 53.99万
  • 项目类别:
Resorbable, Phsophorylated Poly(ester urea) Surgical Adhesive to Enhance Fracture Healing
可吸收的磷酸化聚(酯脲)手术粘合剂可促进骨折愈合
  • 批准号:
    10674973
  • 财政年份:
    2021
  • 资助金额:
    $ 53.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了