IRES Track I: Rapid, Integrated Geotechnical and Geochemical Characterization of Mine Waste for Phytoremediation and Biofuel/Bioenergy Production
IRES 轨道 I:用于植物修复和生物燃料/生物能源生产的矿山废物的快速、综合岩土工程和地球化学表征
基本信息
- 批准号:2107177
- 负责人:
- 金额:$ 16.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The transition to renewable energies requires mining raw materials to develop and sustain these sources of energy. Unfortunately, mining has historically created a legacy of heavy metal contamination all over the world. Heavy metal pollution is a serious global challenge that threatens human life and food security. In recent years, simultaneous clean-up of old, legacy mine sites using phytoremediation and valuable metal production from the harvested plants has generated increased interest in the scientific community. There is further interest in investigating the integration of remediation with the production of bioenergy and other bio-based products for a more sustainable approach to plant-based remediation approaches. This project will foster research collaboration between Colorado School of Mines, Georgia College & State University, and foreign collaborators at the University of Zambia. Each year, a diverse group of four undergraduate and two graduate students will work with US and Zambian mentors to conduct six weeks of international field work on the legacy impacts of mining, phytoremediation, and the integration of phytoremediation with bioenergy production. This project aims to a) provide US students with international research experiences that develop global competence skills and awareness, b) increase knowledge and understanding of simultaneous use of plants for phytoremediation and clean energy production, and c) improve human health and provide alternative sources of energy for Zambians. Participating US students will acquire critical industry and societal skills such as critical thinking, logical reasoning, problem solving, data analysis and interpretation, writing, and presentation of results. In addition, the skills and knowledge acquired by US students will be transferable to the US, where the need for more renewable and clean energies are in high demand. Recruitment efforts will focus on attracting students from underrepresented groups in the Earth and environment science fields to increase their representation. The project will expose students to hands-on multidisciplinary research (i.e. soil science, plant science, mining engineering, environmental engineering, geochemistry) and mentoring from experts in multi-disciplinary fields. The US students will gain knowledge on how responsible extraction of raw material is beneficial and crucial to national economic well-being. Through faculty mentoring, US students will gain high quality international research experience, global awareness and cultural experiences to broaden their world views. The increase in energy sources would help the authorities in Zambia and other developing countries supply clean energy and help meet the ever-increasing demand. The technical objective is to identify geochemical and geotechnical parameters that control the effectiveness of integrated phytoremediation and biofuel production. The hypothesis to be tested is that extraction rates and biofuel potential of hyper accumulator native plant species are a function of climate and the natural variation in the composition and geotechnical properties of mine waste dumps. A secondary objective is to investigate the feasibility of rapid, integrated geotechnical and geochemical characterization of mine waste for phytoremediation and biofuel/bioenergy (i.e., bioethanol, biodiesel biogas/CNG and bioelectricity) production at old mine sites. The study aims to rapidly characterize the properties of old mine waste dumps at selected target sites using advanced geotechnical engineering techniques, identify local metallophyte and pseudometallophyte plant species that can colonize sites that have been highly polluted with heavy metals, identify and compare the most efficient local hyperaccumulator plants, and investigate the biofuel/bioenergy potential of the identified hyperaccumulators. Results from this project will advance knowledge in phytoremediation and the utilization of locally available plants to mitigate adverse health effects of heavy metal pollution while converting biomass to energy, and thereby reducing pressure on fossil fuels and hydroelectricity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
向可再生能源的过渡需要开采原材料来开发和维持这些能源。不幸的是,采矿业历来在世界各地造成了重金属污染。重金属污染是威胁人类生命和粮食安全的严峻全球挑战。近年来,利用植物修复和从收获的植物中生产有价值的金属来同时清理旧矿区,引起了科学界越来越多的兴趣。人们进一步有兴趣研究将修复与生物能源和其他生物基产品的生产相结合,以获得更可持续的植物修复方法。该项目将促进科罗拉多矿业学院、佐治亚学院和州立大学以及赞比亚大学的外国合作者之间的研究合作。每年,由四名本科生和两名研究生组成的多元化小组将与美国和赞比亚导师合作,进行为期六周的国际实地工作,研究采矿、植物修复以及植物修复与生物能源生产相结合的遗留影响。该项目旨在 a) 为美国学生提供国际研究经验,培养全球能力技能和意识,b) 增加对同时使用植物进行植物修复和清洁能源生产的知识和理解,以及 c) 改善人类健康并提供替代来源赞比亚人的能源。参与的美国学生将获得关键的行业和社会技能,如批判性思维、逻辑推理、解决问题、数据分析和解释、写作和结果呈现。此外,美国学生获得的技能和知识将可以转移到对更多可再生和清洁能源的需求旺盛的美国。招生工作将侧重于吸引来自地球和环境科学领域代表性不足群体的学生,以增加他们的代表性。该项目将使学生接触多学科实践研究(即土壤科学、植物科学、采矿工程、环境工程、地球化学)并接受多学科领域专家的指导。美国学生将了解负责任的原材料开采如何对国家经济福祉有益且至关重要。通过教师指导,美国学生将获得高质量的国际研究经验、全球意识和文化体验,以拓宽他们的世界观。能源的增加将有助于赞比亚和其他发展中国家当局供应清洁能源,并有助于满足不断增长的需求。技术目标是确定控制综合植物修复和生物燃料生产有效性的地球化学和岩土工程参数。要测试的假设是,超累积原生植物物种的提取率和生物燃料潜力是气候以及矿山废物堆的成分和岩土特性的自然变化的函数。第二个目标是研究对矿山废物进行快速、综合岩土工程和地球化学表征的可行性,用于旧矿场植物修复和生物燃料/生物能源(即生物乙醇、生物柴油沼气/压缩天然气和生物电)生产。该研究旨在利用先进的岩土工程技术快速表征选定目标地点的旧矿山废物堆的特性,识别可以在重金属高度污染的地点定植的当地金属植物和拟金属植物物种,识别和比较最有效的当地金属植物和拟金属植物物种。超富集植物,并研究已确定的超富集植物的生物燃料/生物能源潜力。 该项目的成果将推进植物修复和利用当地现有植物的知识,以减轻重金属污染对健康的不利影响,同时将生物质转化为能源,从而减轻化石燃料和水力发电的压力。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Mutiti其他文献
Samuel Mutiti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
- 批准号:62301296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
- 批准号:72374125
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Next-generation Rapid Phenotypic Assay for Drug-Resistant M. tuberculosis
下一代耐药结核分枝杆菌快速表型检测方法的开发
- 批准号:
10734083 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
RII Track-4: NSF: Obtaining Data Science Expertise to Enable Rapid Data Driven Material Discovery
RII Track-4:NSF:获得数据科学专业知识以实现快速数据驱动的材料发现
- 批准号:
2229686 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Artificial Intelligence Supported In-Hospital Cardiac Arrest Prediction, Prevention, and Management
人工智能支持院内心脏骤停预测、预防和管理
- 批准号:
489670 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Operating Grants
Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
- 批准号:
2344877 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Cooperative Agreement
Development of a Novel mHealth Platform to Track Health Behaviors of Young Children with Down Syndrome
开发新型移动医疗平台来追踪患有唐氏综合症的幼儿的健康行为
- 批准号:
10569215 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别: