Collaborative Research: SHF: Medium: Heterogeneous Architecture for Collaborative Machine Learning
协作研究:SHF:媒介:协作机器学习的异构架构
基本信息
- 批准号:2106754
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent breakthrough of on-device machine learning with specialized artificial-intelligence hardware brings machine intelligence closer to individual devices. To leverage the power of the crowd, collaborative machine learning makes it possible to build up machine-learning models based on datasets that are distributed across multiple devices while preventing data leakage. However, most existing efforts are focused on homogeneous devices; given the widespread yet heterogeneous participants in practice, it is urgently important but challenging to manage immense heterogeneity. The research team develops heterogeneous architectures for collaborative machine learning to achieve three objectives under heterogeneity: efficiency, adaptivity, and privacy. The proposed heterogeneous architecture for collaborative machine learning is bringing tangible benefits for a wide range of disciplines that employ artificial intelligence technologies, such as healthcare, precision medicine, cyber physical systems, and education. The research findings of this project are intended to be integrated with the existing courses and K-12 programs. Furthermore, the research team is actively engaged in activities that encourage students from underrepresented groups to participate in computer science and engineering research.This project provides the theoretical underpinning and empirical evidence for an efficient, adaptive and privacy-preserving design under heterogeneity, which fills a critical void - the existing collaborative machine-learning approach fails to manage the immense heterogeneity in practice. This project centers on three aspects: (1) design of specialized neural architectures for heterogeneous hardware platforms to cope with the limited efficiency of collaborative training due to heterogeneity; (2) design of an efficient and adaptive knowledge-transfer framework to bridge heterogeneous participants based on their underlying proximity benefits; (3) privacy strategies for heterogeneous collaboration by identifying new vulnerabilities and developing privacy-preserving mechanisms. A general-purpose testbed is built to rigorously validate the proposed research and expand the impact of this project. It is expected that this project opens a new research paradigm to unleash the utmost potential of heterogeneous and collaborative machine intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近,专门的人工智能硬件在设备上机器学习方面取得了突破,使机器智能更接近个人设备。为了利用人群的力量,协作机器学习可以基于分布在多个设备上的数据集构建机器学习模型,同时防止数据泄漏。然而,大多数现有的努力都集中在同质设备上。鉴于实践中参与者广泛而异质,管理巨大的异质性既紧迫又具有挑战性。研究团队开发了用于协作机器学习的异构架构,以实现异构下的三个目标:效率、适应性和隐私。所提出的协作机器学习异构架构正在为医疗保健、精准医学、网络物理系统和教育等采用人工智能技术的广泛学科带来切实的好处。该项目的研究成果旨在与现有课程和 K-12 项目相结合。此外,研究团队还积极开展鼓励弱势群体学生参与计算机科学和工程研究的活动。该项目为异质性下的高效、自适应和隐私保护设计提供了理论基础和经验证据,填补了关键空白——现有的协作机器学习方法无法管理实践中的巨大异质性。该项目主要围绕三个方面进行:(1)针对异构硬件平台设计专门的神经架构,以应对异构性导致的协作训练效率有限; (2) 设计一个高效且适应性强的知识转移框架,根据不同参与者的潜在邻近优势来桥接异质参与者; (3)通过识别新的漏洞和开发隐私保护机制来实现异构协作的隐私策略。建立通用测试平台是为了严格验证拟议的研究并扩大该项目的影响。预计该项目将开启一个新的研究范式,以释放异构和协作机器智能的最大潜力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FedZKT: Zero-Shot Knowledge Transfer towards Resource-Constrained Federated Learning with Heterogeneous On-Device Models
- DOI:10.1109/icdcs54860.2022.00094
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Lan Zhang;Dapeng Wu;Xiaoyong Yuan
- 通讯作者:Lan Zhang;Dapeng Wu;Xiaoyong Yuan
ES Attack: Model Stealing Against Deep Neural Networks Without Data Hurdles
- DOI:10.1109/tetci.2022.3147508
- 发表时间:2020-09
- 期刊:
- 影响因子:5.3
- 作者:Xiaoyong Yuan;Lei Ding;Lan Zhang;Xiaolin Li;D. Wu
- 通讯作者:Xiaoyong Yuan;Lei Ding;Lan Zhang;Xiaolin Li;D. Wu
Membership Inference Attacks and Defenses in Neural Network Pruning
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Xiaoyong Yuan;Lan Zhang
- 通讯作者:Xiaoyong Yuan;Lan Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoyong Yuan其他文献
Trade credit insurance in a capital-constrained supply chain
资金有限的供应链中的贸易信用保险
- DOI:
10.1111/itor.12766 - 发表时间:
2020-01 - 期刊:
- 影响因子:3.1
- 作者:
Hongping Li;Gongbing Bi;Xiaoyong Yuan;Dong Wang - 通讯作者:
Dong Wang
Option contract strategies with risk-aversion and emergency purchase
具有规避风险和紧急购买的期权合约策略
- DOI:
10.1111/itor.12519 - 发表时间:
2020-11 - 期刊:
- 影响因子:3.1
- 作者:
Xiaoyong Yuan;Gongbing Bi;Baofeng Zhang;Yugang Yu - 通讯作者:
Yugang Yu
A multicenter prospective study on the management of hepatoblastoma in children: a report from the Chinese Children's Cancer Group.
儿童肝母细胞瘤治疗的多中心前瞻性研究:中国儿童肿瘤学组的报告。
- DOI:
10.1007/s12519-023-00750-6 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Meng;Xiao;Xiang;Wei;Xiao;Sha;Ju Gao;Fu Li;W. Yao;Song Gu;Weiling Zhang;Qiang Zhao;Shi;Yong;W. Liu;Hui;Chun;Li;Hui Gao;Yun;Shun;Zhi;XiGe Wang;Zhong;Liang;Ye;Huanmin Wang;Xin Sun;Xiaoyong Yuan - 通讯作者:
Xiaoyong Yuan
Study on the Interaction Effects of Risk Factors for Type 2 Diabetes Based on IV Feature Selection and the LightGBM Model
- DOI:
10.2478/amns-2024-0748 - 发表时间:
2024-01 - 期刊:
- 影响因子:3.1
- 作者:
Xiaoyong Yuan - 通讯作者:
Xiaoyong Yuan
PhD Forum: Deep Learning-Based Real-Time Malware Detection with Multi-Stage Analysis
- DOI:
10.1109/smartcomp.2017.7946997 - 发表时间:
2017-05 - 期刊:
- 影响因子:0
- 作者:
Xiaoyong Yuan - 通讯作者:
Xiaoyong Yuan
Xiaoyong Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoyong Yuan', 18)}}的其他基金
CNS Core: Small: Privacy-Preserving On-Device Intelligence in the IoT Era
CNS 核心:小型:物联网时代保护隐私的设备上智能
- 批准号:
2151238 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
- 批准号:42274025
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant