Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison

合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架

基本信息

  • 批准号:
    2106672
  • 负责人:
  • 金额:
    $ 36.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

A fundamental aspect for data analysis is the ability to compare data sets, in order to measure (dis)similarity and quantify patterns present in the data. However, data is often too large and complex to analyze in its entirety, and therefore different techniques are used to summarize the data in order to work with smaller, more manageable representations of it. This project studies the data-comparison problem through the lens of mathematics, using geometric and topological signatures to represent these shapes concisely. This project will consider a variety of different kinds of shape data which live in some larger geometric or topological space (e.g., GIS trajectories, point sets, meshes, 3d scans, or graphs), and consider classes of algebraic, geometric, and graphical signatures which can be used to represent these shapes concisely. The project draws primarily upon the nascent yet rapidly developing area of topological data analysis, where tools from topology like homology or homotopy are combined with geometric measures to create robust analysis tools for analyzing the shape of data. Graduate and undergraduate students will be tightly integrated into the project, and special efforts will be made to involve students from underrepresented groups. Additional efforts by the research team include planning a workshop focused on women in this field, as well as broadening diversity and inclusion efforts in their own universities.The project focuses on shapes that have some common underlying annotation framework on top of the signature, which is usually additional structural or geometric information from the original embedding. The research consists of two major components. In the first, the investigators are initiating a principled study of algorithms and approaches to develop a unified framework which leverages multiple signatures for shape comparison. The goal of this phase is to provide theoretical results as well as empirical evaluations on a variety of data sets and signatures. The second major component of the project studies inverse problems, which aim to reconstruct shapes from a combination of signatures. Such problems are notoriously difficult for geometric or topological signatures, as they are necessarily lossy and remove certain types of information. During the course of the project, the investigators are also developing a shape signatures toolkit that enables computation of a range of signatures and distances, adding to the software both existing notions of distance and new ones developed over the course of the project.This project is jointly funded by the Algorithmic Foundations Core Program and by the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据分析的一个基本方面是比较数据集的能力,以便测量(不)相似性并量化数据中存在的模式。 然而,数据通常太大且复杂,无法对其进行整体分析,因此使用不同的技术来汇总数据,以便使用更小、更易于管理的表示形式。 该项目通过数学的视角研究数据比较问题,使用几何和拓扑特征来简明地表示这些形状。该项目将考虑存在于较大几何或拓扑空间中的各种不同类型的形状数据(例如,GIS 轨迹、点集、网格、3D 扫描或图形),并考虑代数、几何和图形签名类别可以用来简洁地表示这些形状。 该项目主要利用新兴但快速发展的拓扑数据分析领域,其中同源或同伦等拓扑工具与几何测量相结合,创建用于分析数据形状的强大分析工具。研究生和本科生将紧密融入该项目,并将特别努力让来自代表性不足群体的学生参与其中。研究团队的其他努力包括规划一个专注于该领域女性的研讨会,以及扩大她们自己大学的多样性和包容性努力。该项目重点关注在签名之上有一些共同的底层注释框架的形状,即通常来自原始嵌入的附加结构或几何信息。该研究由两个主要部分组成。 首先,研究人员正在启动对算法和方法的原则性研究,以开发一个利用多个签名进行形状比较的统一框架。此阶段的目标是提供理论结果以及对各种数据集和签名的实证评估。该项目的第二个主要组成部分研究逆问题,旨在根据签名组合重建形状。 众所周知,此类问题对于几何或拓扑签名来说非常困难,因为它们必然是有损的并且会删除某些类型的信息。 在项目过程中,研究人员还开发了一个形状签名工具包,可以计算一系列签名和距离,将现有的距离概念和项目过程中开发的新概念添加到软件中。该项目是由算法基础核心计划和刺激竞争研究既定计划 (EPSCoR) 共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aggregating community maps
On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles in a Homology Class
论同调类中计算瓶颈的复杂性和字典序最优循环
Topological Simplification of Nested Shapes
  • DOI:
    10.1111/cgf.14611
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Dan Zeng;E. Chambers;D. Letscher;T. Ju
  • 通讯作者:
    Dan Zeng;E. Chambers;D. Letscher;T. Ju
Distances Between Immersed Graphs: Metric Properties
  • DOI:
    10.1007/s44007-022-00037-8
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Buchin;E. Chambers;Pan Fang;Brittany Terese Fasy;Ellen Gasparovic;E. Munch;C. Wenk
  • 通讯作者:
    M. Buchin;E. Chambers;Pan Fang;Brittany Terese Fasy;Ellen Gasparovic;E. Munch;C. Wenk
Perceptually grounded quantification of 2D shape complexity
  • DOI:
    10.1007/s00371-022-02634-8
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dena Bazazian;Bonnie Magland;C. Grimm;E. Chambers;Kathryn Leonard
  • 通讯作者:
    Dena Bazazian;Bonnie Magland;C. Grimm;E. Chambers;Kathryn Leonard
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erin Chambers其他文献

Metric and Path-Connectedness Properties of the Fréchet Distance for Paths and Graphs
路径和图的 Fréchet 距离的度量和路径连通性属性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erin Chambers;Fasy, Brittany Terese;Holmgren, Benjamin;Majhi, Sushovan;Wenk, Carola
  • 通讯作者:
    Wenk, Carola

Erin Chambers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erin Chambers', 18)}}的其他基金

Travel: Third Workshop for Women in Computational Topology
旅行:第三届计算拓扑学女性研讨会
  • 批准号:
    2317401
  • 财政年份:
    2023
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Reeb graph flows: Metrics, Drawings, and Analysis
AF:小型:协作研究:Reeb 图流:指标、绘图和分析
  • 批准号:
    1907612
  • 财政年份:
    2019
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
AF: Small: Extending algorithms for topological notions of similarity
AF:小:相似性拓扑概念的扩展算法
  • 批准号:
    1614562
  • 财政年份:
    2016
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
Workshop for Women in Shape Analysis
女性身材分析研讨会
  • 批准号:
    1619759
  • 财政年份:
    2016
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
CGV: Small: Collaborative Research: Theories, algorithms, and applications of medial forms for shape analysis
CGV:小型:协作研究:形状分析的中间形式的理论、算法和应用
  • 批准号:
    1319944
  • 财政年份:
    2013
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant
CAREER: Generalizing Planar Algorithms
职业:推广平面算法
  • 批准号:
    1054779
  • 财政年份:
    2011
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 36.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了