Collaborative Research: Specific Energy-Based Prognosis for Machining Surface Integrity through Integration of Process Physics and Machine Learning

合作研究:通过过程物理和机器学习的集成,基于特定能量的加工表面完整性预测

基本信息

  • 批准号:
    2040358
  • 负责人:
  • 金额:
    $ 34.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Manufacturing employs more than 12 million jobs and contributes over $2 trillion to the Gross Domestic Product (GDP) annually. At the same time, manufacturing accounts for about 28 percent of the annual total energy consumed in the U.S. This is particularly true for metal cutting and machining processes, which have been a major contributor to the national economy in value creation, education, workforce development and employment. Despite rapid advancement in sensing and communication technologies, real-time process monitoring and prediction of the surface integrity of machined parts have remained a challenge for energy efficient, high-quality machining. Although the incorporation of real-time sensing data into physics-based machining models has the potential for model updating and calibration, and emerging machine learning (ML) techniques have demonstrated the effectiveness in data analysis for manufacturing, the general black-box nature of ML models has limited rigorous, physics-based interpretations of ML outcomes. This award addresses this existing gap by introducing a physics-guided learning method for machining surface integrity prediction with improved accuracy and transparency, through the complementary strengths of data science and process physics. The outcome of this project impacts multiple industry sectors, from aerospace to automotive, energy, and healthcare. The project’s interdisciplinary nature helps train the next generation of manufacturing workforce by broadening participation of women and underrepresented minority groups in research and education.This research investigates the compounding effects of machining process parameters on the surface integrity of machined parts. The research approach is multifold. (1) Develop physical models for the specific energy associated with machining surface integrity; (2) Develop a data generative method to synthesize images of cutting tool wear and machined surfaces by automatic characterization; (3) Integrate cutting physics into a recurrent neural network (RNN) for physics-guided surface integrity prediction to improve the interpretability and transparency of the ML outcomes; and (4) Experimentally evaluate the developed methods on a production-grade machine. The resulting methodology reduces the time and cost for post-machining product quality inspection, and creates new knowledge in three areas: (1) Introducing a new, energy-centric learning method that characterizes the machining surface integrity by means of specific energy; (2) Developing a new data synthesis method to address limitations in surface integrity data availability for model construction and evaluation; and (3) Demonstrating an effective pathway to integrate machine learning with physical knowledge for improved interpretation of the network structure and its prediction logic, thereby enhancing the network’s transparency and acceptance by the manufacturing industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
制造业提供了超过 1200 万个就业岗位,每年为国内生产总值 (GDP) 贡献超过 2 万亿美元。同时,制造业消耗的能源约占美国年度总能源消耗的 28%。对于金属切削和加工行业来说尤其如此。机械加工工艺在价值创造、教育、劳动力发展和就业方面对国民经济做出了主要贡献,尽管传感和通信技术迅速发展,但机械加工零件表面完整性的实时过程监控和预测仍然是一个重要的问题。挑战尽管将实时传感数据纳入基于物理的加工模型具有模型更新和校准的潜力,并且新兴的机器学习(ML)技术已经证明了制造数据分析的有效性,机器学习模型的一般黑盒性质限制了对机器学习结果的严格的、基于物理的解释,该奖项通过引入物理引导的学习方法来解决这一现有差距,该方法可通过互补的优势来提高准确性和透明度。数据科学和过程物理学。该项目的成果影响了从航空航天到汽车、能源和医疗保健等多个行业领域。该项目的跨学科性质有助于通过扩大女性和代表性不足的少数群体对研究和教育的参与来培训下一代制造业劳动力。加工工艺参数对加工零件表面完整性的复合影响的研究方法有多种:(1) 开发与加工表面完整性相关的特定能量的物理模型;(2) 开发合成图像的数据生成方法。通过自动表征切削刀具磨损和加工表面;(3)将切削物理集成到循环神经网络(RNN)中,以进行物理引导的表面完整性预测,以提高机器学习结果的可解释性和透明度;(4)对所开发的结果进行实验评估;由此产生的方法减少了加工后产品质量检查的时间和成本,并在三个领域创造了新知识:(1) 引入一种新的、以能量为中心的学习方法,该方法可以表征加工表面完整性。经过(2) 开发一种新的数据合成方法,以解决模型构建和评估的表面完整性数据可用性的限制;(3) 展示一种将机器学习与物理知识相结合的有效途径,以改进对网络结构的解释;及其预测逻辑,从而提高网络的透明度和制造业的接受度。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface roughness prediction through GAN-synthesized power signal as a process signature
通过 GAN 合成的功率信号作为过程签名进行表面粗糙度预测
  • DOI:
    10.1016/j.jmsy.2023.05.016
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    12.1
  • 作者:
    Cooper, Clayton;Zhang, Jianjing;Guo, Y.B.;Gao, Robert X.
  • 通讯作者:
    Gao, Robert X.
Texture-Aware Ridgelet Transform and Machine Learning for Surface Roughness Prediction
用于表面粗糙度预测的纹理感知脊波变换和机器学习
Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm
金属增材制造的机器学习:迈向物理信息数据驱动范例
  • DOI:
    10.1016/j.jmsy.2021.11.003
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    12.1
  • 作者:
    S. Guo; M. Agarwal
  • 通讯作者:
    M. Agarwal
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuebin Guo其他文献

Mining Infrequent Itemsets Based on Extended MMS Model
基于扩展MMS模型的非频繁项集挖掘
Electrochemical corrosion behavior of surface nanocrystallized steel and aluminum alloys by air blast shot peening (ABSP)
空气喷丸喷丸(ABSP)表面纳米晶钢和铝合金的电化学腐蚀行为
An Experimental Study on the Effect of Machining-Induced White Layer on Frictional and Wear Performance at Dry and Lubricated Sliding Contact
机加工白层对干润滑滑动接触摩擦磨损性能影响的实验研究
  • DOI:
    10.1080/10402000903283250
  • 发表时间:
    2009-12-23
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yuebin Guo;R. Waikar
  • 通讯作者:
    R. Waikar
Digital twins for electro-physical, chemical, and photonic processes
  • DOI:
    10.1016/j.cirp.2023.05.007
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuebin Guo;A. Klink;Paulo Bartolo;W. Guo
  • 通讯作者:
    W. Guo
Nanomanufacturing—Perspective and applications
纳米制造——前景与应用
  • DOI:
    10.1016/j.cirp.2017.05.004
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fengzhou Fang;Xiaodong Zhang;Wei Gao;Yuebin Guo;G. Byrne;H. N. Hansen
  • 通讯作者:
    H. N. Hansen

Yuebin Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuebin Guo', 18)}}的其他基金

FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
  • 批准号:
    2328260
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
  • 批准号:
    2328260
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Conference: Early-Career Researcher Travel Support for the 30th CIRP Life Cycle Engineering Conference May 15-17, 2023
会议:2023 年 5 月 15 日至 17 日第 30 届 CIRP 生命周期工程会议的早期职业研究员旅行支持
  • 批准号:
    2322400
  • 财政年份:
    2023
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
CDS&E: Computation-Informed Learning of Melt Pool Dynamics for Real-Time Prognosis
CDS
  • 批准号:
    2152908
  • 财政年份:
    2022
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Electrical Discharge Machining of Biomedical Nitinol Alloys and the Resulting Fundamental Relationship of Microstructure-Property-Function
生物医用镍钛诺合金的放电加工及其微观结构-性能-功能的基本关系
  • 批准号:
    1234696
  • 财政年份:
    2012
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Hybrid Dry Cutting - Finish Burnishing of Novel Biodegradable Magnesium-Calcium Implants for Superior Corrosion Performance
混合干切削 - 新型可生物降解镁钙植入物的精加工抛光,具有卓越的腐蚀性能
  • 批准号:
    1000706
  • 财政年份:
    2010
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
GOALI: Six-Sigma Based Robust Process Design Under Tool Deterioration for Giga Fatigue Life of Precision Machined Components in Hard Turning
GOALI:基于 6-Sigma 的稳健工艺设计,在刀具磨损情况下实现硬车削中精密加工部件的千兆疲劳寿命
  • 批准号:
    0825780
  • 财政年份:
    2008
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Fabrication, Property and Function of the Nanostructured Surface Barrier for Hydrogen Storage
储氢纳米结构表面势垒的制备、性能和功能
  • 批准号:
    0700468
  • 财政年份:
    2007
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Massive Parallel Laser Direct-Write of Sub-micron Dent Array for Quantum Leap of Fatigue Performance
合作研究:大规模并行激光直写亚微米凹痕阵列,实现疲劳性能的量子飞跃
  • 批准号:
    0555269
  • 财政年份:
    2006
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant

相似国自然基金

鉴定及研究一群表达FAP的脂肪组织巨噬细胞调控肥胖相关炎症的具体机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于具体物理系统的量子相干性问题研究
  • 批准号:
    12175052
  • 批准年份:
    2021
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
兼具体内长效与肿瘤靶向渗透性能的抗体仿生型递药载体的构建及其机制相关研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
  • 批准号:
    31902373
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242366
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Worksite-specific Safety Training Environments with Augmented Reality
协作研究:具有增强现实功能的特定工作场所安全培训环境
  • 批准号:
    2302819
  • 财政年份:
    2023
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Multi-Omics DACC: The Data Analysis and Coordination Center for the collaborative multi-omics for health and disease initiative
多组学 DACC:健康和疾病协作多组学计划的数据分析和协调中心
  • 批准号:
    10744561
  • 财政年份:
    2023
  • 资助金额:
    $ 34.26万
  • 项目类别:
Reducing Overdose and Suicide Risk in Individuals with OUD and Co-occurring Disorders
降低 OUD 和并发疾病患者的服药过量和自杀风险
  • 批准号:
    10658129
  • 财政年份:
    2023
  • 资助金额:
    $ 34.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了