Collaborative Research: Interactions of Airborne Engineered Nanoparticles with Lung Surfactant Films

合作研究:空气传播的工程纳米粒子与肺表面活性剂膜的相互作用

基本信息

  • 批准号:
    2040301
  • 负责人:
  • 金额:
    $ 36.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Rapid developments in nanotechnology have led to the production and use of various types of engineered nanoparticles. It is inevitable that airborne nanoparticles may be released to the environment and may cause potential consequences for human health, in particular, in the respiratory tract including the lung (alveolar region) once inhaled. The lung surfactant, which covers the alveoli as a thin liquid film, represents the first line of defense against such airborne nanoparticles at the air-liquid interface. This collaborative project, involving a synergistic combination of experimental and computational studies, seeks to study the effects of physicochemical and structural properties of engineered nanoparticles on interfacial flow behaviors and stability of surfactant films. This research activity also is aimed at obtaining a better fundamental understanding of the molecular interactions arising between surfactant films and potentially hazardous engineered nanoparticles in realistically imitated physiological conditions. Fundamental knowledge gained through this project is, therefore, expected to provide new insights into the subsequent retention, translocation, and clearance of inhaled nanoparticles and the sequential processes associated with engineered nanoparticle toxicity overall. The project results will also advance the basic knowledge of the fate of biological nanoparticles, such as coronavirus virions, in the lungs that may have practical implications in medicine. Educational and mentoring aspects of this project include training graduate students in advanced surface science tools and computational techniques, mentoring underrepresented undergraduate students in research, and developing teaching modules and subjects relevant to nanoparticle interactions in biological systems. As the production and use of engineered nanoparticles increases day by day, it is inevitable that these nanoparticles will be released to the environment. Therefore, the occurrence and fate of engineered nanoparticles in the environment, and the potential consequences on human health have been increasingly recognized as issues of critical importance. In particular, airborne nanoparticles can result in a much greater likelihood and extent of exposure to the environment and thus living beings. This collaborative project will focus on improving our fundamental understanding of the molecular interactions between engineered nanoparticles and lung surfactant films at multiple-length scales. The project will evaluate the distribution and fate of inhaled airborne nanoparticles in the respiratory tract. This research project is structured around two specific objectives. First, this project aims to determine the effects of physicochemical and structural properties of inhaled engineered nanoparticles on the viscoelastic responses and interfacial stability of lung surfactant films. Second, the project will generate fundamental data concerning the molecular mechanisms of interfacial interactions in lung surfactant monolayers and multilayers in the absence and presence of engineered nanoparticles at multiple length scales in physiological environments. To achieve these goals, a synergistic combination between experimental and computational approaches will be employed. Experimental advances include a specially modified Langmuir trough, a quartz crystal microbalance with dissipation coupled with a custom-made particle generator unit, and a highly sophisticated surface forces apparatus. The computational component is based on a new coarse-grained computational framework for investigations of nanoscale interfacial processes at air-liquid interfaces, including dissipative particle dynamics models to predict the composition dependent surface tension, elasticity, viscosity, and stability of lung surfactant monolayer and bilayers with doped engineered nanoparticles. These collaborative experimental and computational studies of nanoscale interfacial phenomena are expected to provide qualitative and quantitative information on the viscoelastic properties of lung surfactant films and the attendant response to shear stresses upon breathing affected by adhered/piercing engineered nanoparticles. In addition, the principal investigators will generate systematic information on molecular interactions of engineered nanoparticles with the lung surfactant system, especially in terms of adhesion and fusion behaviors that are related to the structural integrity of lung surfactant films. The findings gained through this project will improve mechanistic understanding of the adhesion and translocation of nanoparticulate matter (e.g., coronavirus virions) across other general cell membranes. Educational components of this project involve training graduate students and mentoring undergraduate students from underrepresented groups in engineering through various programs offered at Rutgers University and the University of California, Riverside.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米技术的快速发展导致了各种类型的工程纳米颗粒的生产和使用。空气中的纳米粒子不可避免地可能被释放到环境中,并可能对人类健康造成潜在后果,特别是一旦吸入,就会对包括肺(肺泡区域)在内的呼吸道造成影响。肺表面活性剂以液体薄膜形式覆盖肺泡,是气液界面处针对此类空气传播纳米颗粒的第一道防线。该合作项目涉及实验和计算研究的协同结合,旨在研究工程纳米颗粒的物理化学和结构特性对界面流动行为和表面活性剂膜稳定性的影响。这项研究活动还旨在更好地了解在真实模拟的生理条件下表面活性剂薄膜和潜在危险的工程纳米粒子之间产生的分子相互作用。因此,通过该项目获得的基础知识预计将为吸入纳米颗粒的后续保留、易位和清除以及与工程纳米颗粒总体毒性相关的顺序过程提供新的见解。该项目的结果还将增进对生物纳米颗粒(例如冠状病毒病毒颗粒)在肺部的命运的基本了解,这可能对医学产生实际影响。该项目的教育和指导方面包括培训研究生先进的表面科学工具和计算技术,指导代表性不足的本科生进行研究,以及开发与生物系统中纳米粒子相互作用相关的教学模块和科目。随着工程纳米粒子的生产和使用日益增加,这些纳米粒子不可避免地被释放到环境中。因此,工程纳米粒子在环境中的出现和命运,以及对人类健康的潜在影响,已越来越被认为是至关重要的问题。特别是,空气中的纳米颗粒可能会导致更大的可能性和更大程度地暴露于环境以及生物。该合作项目将侧重于提高我们对工程纳米粒子和肺表面活性剂膜在多个长度尺度上分子相互作用的基本理解。该项目将评估吸入的空气中纳米颗粒在呼吸道中的分布和归宿。该研究项目围绕两个具体目标构建。首先,该项目旨在确定吸入工程纳米颗粒的物理化学和结构特性对肺表面活性剂膜的粘弹性响应和界面稳定性的影响。其次,该项目将生成有关生理环境中多个长度尺度的工程纳米粒子不存在和存在的情况下肺表面活性剂单层和多层界面相互作用的分子机制的基本数据。为了实现这些目标,将采用实验和计算方法之间的协同组合。实验进展包括经过特殊改造的朗缪尔槽、具有耗散功能的石英晶体微天平以及定制的粒子发生器单元,以及高度复杂的表面力装置。该计算组件基于新的粗粒度计算框架,用于研究气液界面的纳米级界面过程,包括耗散粒子动力学模型,以预测肺表面活性剂单层和双层的成分依赖性表面张力、弹性、粘度和稳定性具有掺杂的工程纳米粒子。这些纳米级界面现象的合作实验和计算研究有望提供有关肺表面活性剂膜的粘弹性特性以及对受粘附/刺穿工程纳米颗粒影响的呼吸时剪切应力的随之响应的定性和定量信息。此外,主要研究人员将生成有关工程纳米粒子与肺表面活性剂系统的分子相互作用的系统信息,特别是与肺表面活性剂膜的结构完整性相关的粘附和融合行为。通过该项目获得的发现将提高对纳米颗粒物质(例如冠状病毒病毒颗粒)在其他一般细胞膜上的粘附和易位的机制的理解。该项目的教育部分包括通过罗格斯大学和加州大学河滨分校提供的各种项目来培训研究生和指导工程领域代表性不足群体的本科生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Younjin Min其他文献

Bioinspired Superhydrophobic Nanocoating Based on Polydopamine and Nanodiamonds to Mitigate Bacterial Attachment to Polyvinyl Chloride Surfaces in Food Industry Environments
基于聚多巴胺和纳米金刚石的仿生超疏水纳米涂层可减轻食品工业环境中聚氯乙烯表面的细菌附着
  • DOI:
    10.1021/acs.iecr.3c04230
  • 发表时间:
    2024-03-27
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    William DeFlorio;Abdulla Zaza;Yashwanth Arcot;Younjin Min;Alej;ro Castillo;ro;Matthew Taylor;Luis
  • 通讯作者:
    Luis
Interactions of foliar nanopesticides with insect cuticle facilitated through plant cuticle: Effects of surface chemistry and roughness-topography-texture
通过植物角质层促进叶面纳米农药与昆虫角质层的相互作用:表面化学和粗糙度-地形-纹理的影响
  • DOI:
    10.1016/j.plana.2024.100062
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yashwanth Arcot;Monica Iepure;Li Hao;Younjin Min;Spencer T. Behmer;M. Akbulut
  • 通讯作者:
    M. Akbulut
Electrospun superhydrophobic nanocomposite packing material based on polyvinyl chloride /polydimethylsiloxane blend and nanodiamond with enhanced antifouling and mechanical properties for fresh fruits and vegetables
  • DOI:
    10.1016/j.afres.2024.100417
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuhao Liu;Wentao Zhou;William DeFlorio;Monica Iepure;Younjin Min;M. Akbulut
  • 通讯作者:
    M. Akbulut
Polymer Multilayer Tattooing for Enhanced Dna Vaccination Accessed Terms of Use Detailed Terms Polymer Multilayer Tattooing for Enhanced Dna Vaccination Nih Public Access Author Manuscript Design, Fabrication, and Testing of 'quick-release' Multilayers Multilayer Delivery into Skin from Microneedles
用于增强 DNA 疫苗接种的聚合物多层纹身 访问使用条款 详细条款 用于增强 DNA 疫苗接种的聚合物多层纹身 Nih 公共访问 作者手稿设计、制造和测试“快速释放”多层 从微针将多层输送到皮肤
  • DOI:
    10.1021/acsami.8b01658
  • 发表时间:
    2018-03-23
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Citation Demuth;Peter C;Younjin Min;Bonnie Huang;Joshua A. Kramer;Andrew D Miller;DanH. Barouch;Paula T. Hammond;Darrell J Irvine;P. DeMuth;Darrell J. Irvine
  • 通讯作者:
    Darrell J. Irvine
Geocolloidal interactions and relaxation dynamics under nanoconfinement: Effects of salinity and particle concentration.
纳米约束下的土胶体相互作用和弛豫动力学:盐度和颗粒浓度的影响。
  • DOI:
    10.1016/j.jcis.2023.11.011
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Yuanzhong Zhang;Rundong Huang;Monica Iepure;S. Merriman;Younjin Min
  • 通讯作者:
    Younjin Min

Younjin Min的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Younjin Min', 18)}}的其他基金

Mechanobiology of Asymmetric Myelin Membranes at Multiple Length Scales
多长度尺度不对称髓磷脂膜的力学生物学
  • 批准号:
    2015621
  • 财政年份:
    2019
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
Mechanobiology of Asymmetric Myelin Membranes at Multiple Length Scales
多长度尺度不对称髓磷脂膜的力学生物学
  • 批准号:
    2015621
  • 财政年份:
    2019
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
UNS: Interfacial Properties of Nanoconfined Ionic Liquid
UNS:纳米离子液体的界面性质
  • 批准号:
    2015653
  • 财政年份:
    2019
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
UNS: Interfacial Properties of Nanoconfined Ionic Liquid
UNS:纳米离子液体的界面性质
  • 批准号:
    2015653
  • 财政年份:
    2019
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
Mechanobiology of Asymmetric Myelin Membranes at Multiple Length Scales
多长度尺度不对称髓磷脂膜的力学生物学
  • 批准号:
    1826250
  • 财政年份:
    2018
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
UNS: Interfacial Properties of Nanoconfined Ionic Liquid
UNS:纳米离子液体的界面性质
  • 批准号:
    1511626
  • 财政年份:
    2015
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant

相似国自然基金

低代码情境下企业数字化转型全员参与实施的互动机制研究
  • 批准号:
    72302244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
智能技术背景下居民预期行为与城市空间重构的互动机理研究
  • 批准号:
    42301285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态数据驱动的自闭症儿童“动作-情感”识别与体感互动游戏干预研究
  • 批准号:
    62307034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
互动、流动与再物质化:文化遗产实践中的参与式意义建构研究
  • 批准号:
    42301261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
师幼互动神经认知机理及其启发的质量提升追踪研究
  • 批准号:
    62307002
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
  • 批准号:
    2346372
  • 财政年份:
    2024
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
  • 批准号:
    2346371
  • 财政年份:
    2024
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: MICRO-CCS: Microbial Interactions Create Research Opportunities for Community College Students
合作研究:REU 网站:MICRO-CCS:微生物相互作用为社区学院学生创造研究机会
  • 批准号:
    2349220
  • 财政年份:
    2024
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: MICRO-CCS: Microbial Interactions Create Research Opportunities for Community College Students
合作研究:REU 网站:MICRO-CCS:微生物相互作用为社区学院学生创造研究机会
  • 批准号:
    2349221
  • 财政年份:
    2024
  • 资助金额:
    $ 36.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了