Material Response to Dense Electronic Excitations: Nonlinear Defect Dynamics and Phase Transformations

材料对密集电子激励的响应:非线性缺陷动力学和相变

基本信息

  • 批准号:
    2104228
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Non-Technical Description: The response of materials to energy dissipation from energetic charged particles is important for defect engineering, ion-beam modification, ion-beam processing, ion-beam analysis, geologic age dating, space exploration, high-energy accelerators and nuclear applications. As a charged particle penetrates a solid, its energy is transferred to atomic nuclei and to electrons leading to complex energy dissipation processes in the solid that are coupled in time and space. The energy transferred to electrons results in highly-local, dense electronic excitations that often exceed those produced by intense pulsed lasers. These coupled processes bring materials to extreme and often transient regimes where unique defects, novel nanostructures, and material phases are formed, and where competitive self-healing can be induced. The goal of this project is to achieve critical understanding on these coupled phenomena on the response of materials and to identify new pathways to control the formation of defects, nanostructures and phases for advanced electro-optical systems, for tailoring materials functionality and performance, and for the design of better materials for advanced energy technologies. This project provides a unique set of integrated education, research, training and outreach activities to educate both undergraduate and graduate students in fundamental research on a new class of engineering materials, recruits students from under-represented groups in STEM areas, and provides training for the next-generation workforce in advanced electro-optical and energy technologies across academia, national laboratories and industry. Technical Description: This project applies experimental approaches to understand, model and ultimately control the far-from-equilibrium dynamic response of ceramic materials to extreme energy dissipation from energetic charged-particles at the level of electrons and atoms in order to guide materials discovery and tailor materials functionality and performance. The model ABO3 perovskites to be studied exhibit different bonding character, strong luminescence signatures for electronic and lattice defects, and distinctly different response to electronic and nuclear energy loss. The response of these model perovskite structures to single and multiple ion events is experimentally investigated over a range of conditions to vary the partitioning of energy transfer to electrons and atoms in both undamaged single crystals and in single crystals containing different pre-existing levels of damage. The investigations are designed to both separately and simultaneously probe high electronic excitation densities and the coupling of electronic and atomic processes under irradiation from cryogenic to elevated temperatures using in situ ion-beam analysis and optical spectroscopy techniques, as well as advanced microscopy and x-ray diffraction methods. This research provides transformative new understanding of the complex electronic and atomic correlations with extreme energy dissipation that enables the formation of unique defect states, the design and discovery of materials with novel functionalities for advanced technologies, and the development of self-healing and radiation tolerant materials for next generation high-energy accelerators, space environments and nuclear applications. This project provides a unique set of education, research and training activities on state-of-the-art ion-beam capabilities, materials characterization techniques and defect physics, as well as written and oral communication skills, that prepare students for the technological workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:材料对能量电荷颗粒的能量耗散的响应对于缺陷工程,离子梁修饰,离子束处理,离子束分析,地质年龄测年,空间探索,高能量加速器和核核促进剂和核核能很重要申请。当带电的粒子穿透固体时,其能量被转移到原子核中,并转移到导致固体中复杂能量耗散过程的电子中,这些过程与时间和空间耦合。转移到电子的能量会导致高度本地,密集的电子激发,通常超过强烈的脉冲激光器产生的激发。这些耦合过程使材料达到了极端和通常的瞬时状态,在这些方案中形成了独特的缺陷,新颖的纳米结构和材料阶段,并且可以引起竞争性的自我修复。该项目的目的是对材料响应的这些耦合现象获得批判性了解,并确定控制缺陷,纳米结构和阶段的新途径,以用于高级电光系统,以调整材料功能和性能,以及用于高级能源技术的更好材料的设计。该项目提供了一套独特的综合教育,研究,培训和外展活动,以对新的工程材料进行基础研究的本科和研究生教育,从而从STEM领域招募了代表性不足的团体的学生,并为培训提供了培训,并为在学术界,国家实验室和工业的高级电光和能源技术的下一代员工队伍。 技术描述:该项目采用实验方法来理解,建模并最终控制陶瓷材料对电子和原子水平上的充电粒子的极端能量耗散的远程平衡动态响应,以指导材料发现并量身定制。材料功能和性能。要研究的模型ABO3钙钛矿表现出不同的键合特征,用于电子和晶格缺陷的强发光特征以及对电子和核能损失的响应明显不同。这些模型钙钛矿结构对单个离子和多个离子事件的响应在一系列条件下进行了研究,以改变在未损坏的单晶和包含不同预先存在损害水平的单晶中能量转移到电子和原子的分配。该研究的设计旨在分别探测高电子激发密度,以及在辐射下从低温到高温到升高温度下的电子和原子过程的偶联,并使用原位梁分析和光学光谱技术,以及先进的显微镜和高级显微镜和X射线射击技术衍射方法。这项研究提供了与极端能量耗散的复杂电子和原子相关性的变革性新理解,从而可以形成独特的缺陷状态,设计和发现具有高级技术的新功能的材料以及自我修复和辐射材料的发展用于下一代高能加速器,太空环境和核应用。该项目提供了一套独特的教育,研究和培训活动,涉及最先进的离子束功能,材料表征技术和缺陷物理学以及书面和口头沟通技巧,这使学生为技术劳动力做好了准备。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing two-stage phase transition process in defective KTaO3 under inelastic interactions
  • DOI:
    10.1016/j.scriptamat.2022.115032
  • 发表时间:
  • 期刊:
  • 影响因子:
    6
  • 作者:
    D. Iancu;E. Zarkadoula;M. Mihai;C. Burducea;I. Burducea;M. Straticiuc;Y. Zhang;W. J. Weber;G. Velişa
  • 通讯作者:
    D. Iancu;E. Zarkadoula;M. Mihai;C. Burducea;I. Burducea;M. Straticiuc;Y. Zhang;W. J. Weber;G. Velişa
Defect generation mechanisms in silica under intense electronic excitation by ion beams below 100 K: Interplay between radiative emissions
低于 100 K 的离子束强烈电子激发下二氧化硅中的缺陷产生机制:辐射发射之间的相互作用
  • DOI:
    10.1016/j.actamat.2023.119097
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Crespillo, M.L.;Graham, J.T.;Weber, W.J.;Agulló-López, F.
  • 通讯作者:
    Agulló-López, F.
Athermal annealing of pre-existing defects in crystalline silicon
晶体硅中预先存在的缺陷的非热退火
  • DOI:
    10.1016/j.actamat.2023.119379
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Mihai, M.D.;Iancu, D.;Zarkadoula, E.;Florin, R.A.;Tong, Y.;Zhang, Y.;Weber, W.J.;Velişa, G.
  • 通讯作者:
    Velişa, G.
High entropy ceramics for applications in extreme environments
  • DOI:
    10.1088/2515-7639/ad2ec5
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Z. Ward;R. P. Wilkerson;B. Musicó;A. Foley;M. Brahlek;W. J. Weber;K. Sickafus;A. R. Mazza
  • 通讯作者:
    T. Z. Ward;R. P. Wilkerson;B. Musicó;A. Foley;M. Brahlek;W. J. Weber;K. Sickafus;A. R. Mazza
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Weber其他文献

African Rain Forest Ecology and Conservation: An Interdisciplinary Perspective
非洲雨林生态与保护:跨学科视角
  • DOI:
    10.5860/choice.39-2192
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    L. White;William Weber;A. Vedder;Bradley C Bennett;Mr. Lee J. T. White
  • 通讯作者:
    Mr. Lee J. T. White
Intracranial Intraosseous Catheter Placement to Temporize an Epidural Hematoma.
颅内骨内导管放置以暂时缓解硬膜外血肿。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    William Weber;T. Campbell;Thomas Papandria;Arjang Ahmadpour
  • 通讯作者:
    Arjang Ahmadpour

William Weber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Weber', 18)}}的其他基金

Ru Catalyzed C-H Activation, Regioselective Copolymerization of Aromatic Ketones and Alpha, Omega Dienes
Ru催化C-H活化、芳香酮与α、Omega二烯的区域选择性共聚
  • 批准号:
    9616796
  • 财政年份:
    1997
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Purchase of a Nuclear Magnetic Resonance Spectrometer
购买核磁共振波谱仪
  • 批准号:
    8905064
  • 财政年份:
    1989
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Facilities Support for the University of Colorado Herbarium
科罗拉多大学植物标本馆的设施支持
  • 批准号:
    8815536
  • 财政年份:
    1989
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Acquisition of a Nuclear Magnetic Resonance Spectrometer
购置核磁共振波谱仪
  • 批准号:
    8617987
  • 财政年份:
    1987
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Phase Transfer Catalysis Ii
相转移催化II
  • 批准号:
    7305015
  • 财政年份:
    1973
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

轻质镁钪应变玻璃合金的宽温域大回复应变特性及机理
  • 批准号:
    52301246
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多项式时间下的多重回复性与多重遍历平均及其应用
  • 批准号:
    12371196
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
激光立体成形梯度TiNi形状记忆合金的渐变回复机理研究
  • 批准号:
    52371199
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
强回复作用下无取向电工钢多组分{100}织构调控机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
平均场随机微分方程解的回复性及稳定性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Chromogranin A is an aging risk factor
嗜铬粒蛋白 A 是衰老的危险因素
  • 批准号:
    10667265
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Investigation on nonlinear response mechanisms through direct simultaneous measurement of flow field and stress field in dense particle suspension
通过直接同时测量致密颗粒悬浮液中的流场和应力场研究非线性响应机制
  • 批准号:
    23K17729
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Alcohol and calorie-dense diet-mediated hepatic mitochondrial dysregulation
酒精和高热量饮食介导的肝线粒体失调
  • 批准号:
    10679945
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
CRCNS: Dense longitudinal neuroimaging to evaluate learning in childhood
CRCNS:密集纵向神经影像评估儿童学习情况
  • 批准号:
    10835136
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Neuroimaging to investigate mechanisms underlying changes in Intake of high energy dense foods and alcohol from pre to post bariatric surgery
神经影像学研究减肥手术前后高能量密度食物和酒精摄入量变化的机制
  • 批准号:
    10639188
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了