Frameworks: An Interoperable Software Ecosystem for Many-Body Electronic Structure Calculations

框架:用于多体电子结构计算的可互操作软件生态系统

基本信息

  • 批准号:
    2103991
  • 负责人:
  • 金额:
    $ 385.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The development of advanced materials is a key driver of progress in areas of national strategic importance, such as energy generation, storage, and distribution, wireless communications, and quantum technologies. For example the operation of solar panels, solid-state batteries, touch screens, flat-panel displays, and quantum computer prototypes critically relies on the properties and functionalities of advanced materials down to the scale of individual atoms. Further improving the performance of these materials, as well as designing brand new materials with novel functionalities, requires a detailed understanding of how macroscopic properties, such as the ability to carry electricity, to absorb and emit light, and to store chemical energy, emerge from the elemental composition and the atomic structure of each compound. In this context, simulating materials behavior by solving the fundamental equations of quantum mechanics on supercomputers has become an indispensable complement to experimental research. Today there exists an abundance of high-performance computing software to investigate and predict the properties of materials in their lowest energy state, or ground state. These tools are primarily based on density functional theory, an incredibly successful conceptual paradigm that allows us to find approximate yet accurate solutions of the Schrödinger equation of quantum mechanics for entire materials. While these methods are essential for predicting structural and energetic properties such as thermodynamic phase diagrams, they are not suitable to describe more advanced functional properties such as light-matter interactions, charge transport under electric and magnetic fields, and macroscopic quantum phenomena such as superconductivity. The current project fills this gap by developing a comprehensive software ecosystem to compute and predict functional properties of materials beyond what is currently possible with density functional theory. The cyberinfrastructure supported by this grant will enable the rational design of advanced functional materials at the atomic scale, and will underpin the development of next-generation materials for energy, computing, and quantum technologies. The research program will be tightly integrated with educational activities to promote scientific research in diverse communities. To this end, webinars, schools and hackathons for users and developers will be organized annually.The aim of this project is to create an interoperable software ecosystem to model and design materials at the atomic scale using many-body field-theoretic approaches. Many-body electronic structure methods define a gold standard for accuracy, reliability, and predictive power, but the widespread adoption of these methods in academia and in industry is hindered by the complexity of the underlying theories and algorithms, as well as the lack of broad interoperability and shared data standards. The project expands and combines the complementary strengths of three software packages, EPW, BerkeleyGW, and SternheimerGW, into a user-centric, containerized simulation laboratory with shared data formats and built-in compatibility layers for major density-functional theory codes. This cyberinfrastructure advances understanding of the interplay between electronic and lattice degrees of freedom in advanced materials, and expands the range of properties that can be calculated with predictive accuracy, including: finite-temperature quasiparticle band structures; light absorption and emission spectra; excitons, polarons, and their couplings; superconductivity; carrier transport; and driven quantum systems. Furthermore, this cyberinfrastructure will accelerate future software development by distributing curated, reusable, and interoperable open-source code, and by providing a platform to develop and test new algorithms and software for many-body electronic structure methods. Central to the proposed effort is the training of a diverse, inclusive, and globally competitive STEM workforce cutting across data-driven materials research and cyberinfrastructure development.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Materials Research within the NSF Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高级材料的开发是国家战略重要性领域进步的主要驱动力,例如能源产生,存储和分销,无线通信和量子技术。例如,太阳能电池板,固态电池,触摸屏,平板显示器和量子计算机原型的操作非常依赖于高级材料的特性和功能,直到单个原子的规模。进一步改善这些材料的性能,并设计具有新功能的全新材料,需要详细了解宏观特性(例如携带电能的能力,吸收和发射光线的能力)如何从元素组成和每种化合物的原子结构中脱颖而出。在这种情况下,通过在超级计算机上求解量子力学的基本方程来模拟材料行为已成为实验研究必不可少的补充。如今,存在大量的高性能计算软件,以调查和预测其最低能量状态或基态的材料的性质。这些工具主要基于密度功能理论,这是一种非常成功的概念范式,使我们能够找到适当而准确的量子量子量量子力学方程的解决方案。尽管这些方法对于预测结构和能量特性(例如热力学相图)至关重要,但它们不适合描述更先进的功能性能,例如光 - 摩尔和磁场下的电荷转运以及宏观量子现象,例如超导性。当前的项目通过开发一个综合的软件生态系统来计算和预测材料的功能特性,超出了密度功能理论,以填补和预测材料的功能特性。该赠款支持的网络基础设施将使原子量表的高级功能材料的合理设计,并将支持下一代能源,计算和量子技术的开发。该研究计划将与教育活动紧密整合,以促进潜水员社区的科学研究。为此,将每年组织用于用户和开发人员的网络研讨会,学校和黑客马拉松。该项目的目的是使用多体现场理论方法创建一个可互操作的软件生态系统,以在原子量表上建模和设计材料。多体电子结构方法为准确性,可靠性和预测能力定义了黄金标准,但是在学术界和行业中采用这些方法的宽度受到了基本理论和算法的复杂性,以及缺乏广泛的互操作性和共享数据标准。该项目将三个软件包,EPW,Berkeleygw和Sternheimergw的完整强度扩展并结合到一个以用户为中心的,集装箱的模拟实验室,以及共享数据格式和共享数据格式和内置兼容性层,用于主要密度官能理论代码。这种网络基础设施提高了对高级材料中电子自由度和晶格自由度之间相互作用的理解,并扩大了可以以预测精度计算的属性范围,包括:有限温度 - 温度 - 元素式粒子带结构;光吸收和发射光谱;激子,极极及其耦合;超导;运输运输;和驱动量子系统。此外,这种网络基础结构将通过分发策划,可重复使用和可互操作的开源代码来加速未来的软件开发,并提供一个平台来开发和测试新算法和软件的多体电子结构方法。拟议努力的核心是对潜水员,包容性和全球竞争性的STEM劳动力进行培训,跨数据驱动的材料研究和网络基础设施发展。这是由高级网络基础设施办公室颁发的奖项,共同支持NSF的材料研究局在NSF中的材料研究局,NSF的数学和授权授予NSF的授权,并反映了nsf的批准。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anharmonic electron-phonon coupling in ultrasoft and locally disordered perovskites
  • DOI:
    10.1038/s41524-023-01089-2
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    M. Zacharias;G. Volonakis;F. Giustino;J. Even
  • 通讯作者:
    M. Zacharias;G. Volonakis;F. Giustino;J. Even
Anharmonic lattice dynamics via the special displacement method
  • DOI:
    10.1103/physrevb.108.035155
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    M. Zacharias;G. Volonakis;F. Giustino;J. Even
  • 通讯作者:
    M. Zacharias;G. Volonakis;F. Giustino;J. Even
Ab initio self-consistent many-body theory of polarons at all couplings
  • DOI:
    10.1103/physrevb.106.075119
  • 发表时间:
    2022-08-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Lafuente-Bartolome, Jon;Lian, Chao;Giustino, Feliciano
  • 通讯作者:
    Giustino, Feliciano
Anisotropic-strain-enhanced hole mobility in GaN by lattice matching to ZnGeN 2 and MgSiN 2
通过与 ZnGeN 2 和 MgSiN 2 晶格匹配实现 GaN 中各向异性应变增强的空穴迁移率
  • DOI:
    10.1063/5.0092709
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Leveillee, Joshua;Poncé, Samuel;Adamski, Nicholas L.;Van de Walle, Chris G.;Giustino, Feliciano
  • 通讯作者:
    Giustino, Feliciano
共 4 条
  • 1
前往

Feliciano Giustino其他文献

<span class="small-caps">SternheimerGW</span>: A program for calculating <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1442" altimg="si24.svg" class="math"><mrow><mi>G</mi><mi>W</mi></mrow></math> quasiparticle band structures and spectral functions without unoccupied states
  • DOI:
    10.1016/j.cpc.2019.07.019
    10.1016/j.cpc.2019.07.019
  • 发表时间:
    2020-02-01
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Martin Schlipf;Henry Lambert;Nourdine Zibouche;Feliciano Giustino
    Martin Schlipf;Henry Lambert;Nourdine Zibouche;Feliciano Giustino
  • 通讯作者:
    Feliciano Giustino
    Feliciano Giustino
共 1 条
  • 1
前往

Feliciano Giustino的其他基金

Collaborative Research: DMREF: Quasi-Direct Semiconductors
合作研究:DMREF:准直接半导体
  • 批准号:
    2119555
    2119555
  • 财政年份:
    2021
  • 资助金额:
    $ 385.7万
    $ 385.7万
  • 项目类别:
    Standard Grant
    Standard Grant
School on Electron-Phonon Physics from First Principles
从第一原理开始的电子声子物理学院
  • 批准号:
    2007638
    2007638
  • 财政年份:
    2020
  • 资助金额:
    $ 385.7万
    $ 385.7万
  • 项目类别:
    Standard Grant
    Standard Grant
Rational design of solid-state semiconductor-sensitized solar cells: from materials modelling to device fabrication
固态半导体敏化太阳能电池的合理设计:从材料建模到器件制造
  • 批准号:
    EP/J009857/1
    EP/J009857/1
  • 财政年份:
    2012
  • 资助金额:
    $ 385.7万
    $ 385.7万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

面向多链融合的区块链跨链互操作与可扩展关键技术研究
  • 批准号:
    U21A20467
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:

相似海外基金

An AI Powered Software Tool for Planning, Implementing and Monitoring Collaborative and Interoperable maritime Telecommunication Networks
人工智能驱动的软件工具,用于规划、实施和监控协作和可互操作的海上电信网络
  • 批准号:
    10104335
    10104335
  • 财政年份:
    2024
  • 资助金额:
    $ 385.7万
    $ 385.7万
  • 项目类别:
    Launchpad
    Launchpad
AUTOTRACT - Development of interoperable, low-cost, 'self-driving' software platform for tractor manufacturers
AUTOTRACT - 为拖拉机制造商开发可互操作、低成本的“自动驾驶”软件平台
  • 批准号:
    10057982
    10057982
  • 财政年份:
    2023
  • 资助金额:
    $ 385.7万
    $ 385.7万
  • 项目类别:
    Collaborative R&D
    Collaborative R&D
An Interoperable HL7 FHIR-based Medical Device Data System (MDDS) For Accessing And Integrating Live Point-Of-Care Data From High-Acuity Bedside Patient Monitoring Equipment
基于 HL7 FHIR 的可互操作医疗设备数据系统 (MDDS),用于访问和集成来自高敏锐度床边患者监护设备的实时护理点数据
  • 批准号:
    10353084
    10353084
  • 财政年份:
    2021
  • 资助金额:
    $ 385.7万
    $ 385.7万
  • 项目类别:
Open, interoperable, and configurable clinical decision support modules for OpenMRS, OpenEMR, and beyond
适用于 OpenMRS、OpenEMR 等的开放、可互操作且可配置的临床决策支持模块
  • 批准号:
    10609206
    10609206
  • 财政年份:
    2020
  • 资助金额:
    $ 385.7万
    $ 385.7万
  • 项目类别:
Research on software contracts for highly interoperable software modules
高度互操作软件模块的软件契约研究
  • 批准号:
    20H00582
    20H00582
  • 财政年份:
    2020
  • 资助金额:
    $ 385.7万
    $ 385.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
    Grant-in-Aid for Scientific Research (A)