CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics

CAS:优化界面电动学的协同位点和电解质设计

基本信息

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Drs. Huiyuan Zhu and Hongliang Xin of the Virginia Polytechnic Institute and State University are studying new strategies to improve the performance of catalysts that recycle carbon dioxide (CO2) using renewable electricity. Traditional metal electrodes, including precious metals (Au, Ag) and base metals (Cu, Zn), have shown encouraging performance toward CO2 reduction. However, the process is limited by low energy efficiency and poor product selectivity. These processes are conducted in water, and the competing reduction of water to H2 is largely responsible for this inefficiency. This proposal addresses this challenge using ionic liquids as non-aqueous electrolytes together with electrode materials designed to work with ionic liquids. The educational components of the project include the following: (1) The interdisciplinary training of undergraduate and graduate students in electrochemical techniques, materials characterization, and molecular modeling. (2) The involvement of diverse underrepresented groups including female students in science and engineering. (3) The implementation of STEM outreach programs to K-12 students from diverse groups and low-income families through hands-on demonstrations that illustrate the importance of nanomaterials, modeling, catalysis, and energy in our daily life. Undergraduate summer interns from underrepresented minority groups will be recruited to work on this project through a partnership with Hampton University. With the support of the Chemical Catalysis program in the Division of Chemistry, Drs. Huiyuan Zhu and Hongliang Xin of the Virginia Polytechnic Institute and State University are studying a cooperative site and electrolyte tuning strategy for the rational design of electrocatalytic systems to get beyond energy-scaling limitations, specifically for electrochemical CO2 reduction reactions (eCO2RR) on bismuth-based bimetallic nanocatalysts with non-aqueous ionic liquid electrolytes. The known Sabatier principle, arising from the adsorption-energy scaling relations at geometrically similar sites, generally imposes volcano-shaped constraints on the attainable catalytic performance. The Zhu-Xin team hypothesizes that the crucial charge-transfer intermediates toward CO2 reduction can be stabilized by cooperatively tailoring the p-band of active Bi sites via doping and heterocyclic cations of ionic liquids, while the competing hydrogen evolution reaction (HER) is suppressed. Using a combination of precision synthesis, electrocatalysis, advanced characterization techniques, as well as molecular modeling tools, the team seeks to uncover structure-reactivity relationships at the interface of nanoparticles and ionic liquid electrolytes. Success of this proposed research has the potential to advance fundamental understanding of CO2 reduction chemistry and provide guiding principles for catalyst design to address current challenges in eCO2RR. The atomistic insights into physicochemical properties of solid-electrolyte interfaces from this project may provide guidance for the design of other electrocatalytic transformations. Beyond scientific and technical impact, this project will train students at the interface of materials chemistry, quantum-chemical modeling, and catalysis, and prepare them for career pathways in academia and/or industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,博士。弗吉尼亚理工学院暨州立大学的 Huiyuan Zhu 和 Hongliang Xin 正在研究新策略,以提高使用可再生电力回收二氧化碳 (CO2) 的催化剂的性能。传统金属电极,包括贵金属(Au、Ag)和贱金属(Cu、Zn),在二氧化碳减排方面表现出了令人鼓舞的性能。然而,该工艺受到能源效率低和产物选择性差的限制。这些过程是在水中进行的,而水的竞争性还原为氢气是造成这种低效率的主要原因。该提案使用离子液体作为非水电解质以及设计用于离子液体的电极材料来解决这一挑战。该项目的教育内容包括以下内容:(1)本科生和研究生在电化学技术、材料表征和分子建模方面的跨学科培训。 (2) 包括女学生在内的各种代表性不足的群体参与科学和工程领域。 (3) 通过实践演示,向来自不同群体和低收入家庭的 K-12 学生实施 STEM 推广计划,说明纳米材料、建模、催化和能源在我们日常生活中的重要性。通过与汉普顿大学的合作,将招募来自代表性不足的少数群体的本科暑期实习生来参与该项目。 在化学系化学催化项目的支持下,博士。弗吉尼亚理工学院暨州立大学的 Huiyuan Zhu 和 Hongliang Xin 正在研究一种合作场地和电解质调节策略,以合理设计电催化系统,以超越能量规模限制,特别是基于铋基的电化学 CO2 还原反应 (eCO2RR)具有非水离子液体电解质的双金属纳米催化剂。已知的萨巴蒂尔原理源自几何相似位置处的吸附能量缩放关系,通常对可达到的催化性能施加火山形限制。朱新团队假设,通过离子液体的掺杂和杂环阳离子协同调整活性Bi位点的p带,可以稳定CO2还原的关键电荷转移中间体,同时抑制竞争性析氢反应(HER) 。该团队结合精密合成、电催化、先进表征技术以及分子建模工具,试图揭示纳米粒子和离子液体电解质界面的结构-反应性关系。这项研究的成功有可能促进对 CO2 还原化学的基本理解,并为催化剂设计提供指导原则,以应对 eCO2RR 当前的挑战。该项目对固体电解质界面物理化学性质的原子洞察可能为其他电催化转化的设计提供指导。除了科学和技术影响之外,该项目还将在材料化学、量子化学建模和催化方面对学生进行培训,并为他们在学术界和/或工业界的职业道路做好准备。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advances in Electrocatalytic Semi-hydrogenation of Acetylene in Aqueous Electrolyte: Progress, Challenges, and Opportunities
水电解质中乙炔电催化半加氢的进展:进展、挑战和机遇
  • DOI:
    10.31635/renewables.023.202300027
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan, Zihao;Xu, Libang;Zhu, Huiyuan
  • 通讯作者:
    Zhu, Huiyuan
Machine learning of lateral adsorbate interactions in surface reaction kinetics
表面反应动力学中横向吸附质相互作用的机器学习
  • DOI:
    10.1016/j.coche.2022.100825
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Mou, Tianyou;Han, Xue;Zhu, Huiyuan;Xin, Hongliang
  • 通讯作者:
    Xin, Hongliang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huiyuan Zhu其他文献

Validation of 1D model for methane/air/Pt combustion in a stagnation flow
停滞流中甲烷/空气/Pt 燃烧的一维模型验证
Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance
通过气体驱动剥离形成少层石墨烯以增强超级电容性能
  • DOI:
    10.1016/j.jechem.2017.09.018
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    13.1
  • 作者:
    Peiwen Wu;Jing He;Linlin Chen;Yingcheng Wu;Hongping Li;Huiyuan Zhu;Huaming Li;Wenshuai Zhu
  • 通讯作者:
    Wenshuai Zhu
Mesoporous Carbon-supported Ultrasmall Metal Nanoparticles via a Mechanochemical-driven Redox Reaction: A “Two-in-One” Strategy
通过机械化学驱动的氧化还原反应制备介孔碳支撑的超小金属纳米粒子:“二合一”策略
  • DOI:
    10.1016/j.apcatb.2021.120232
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    22.1
  • 作者:
    Tian Jin;Xiaofei Liu;Ya-Qiong Su;Fenghongkang Pan;Xue Han;Huiyuan Zhu;Rongqian Wu;Yi Lyu
  • 通讯作者:
    Yi Lyu
Numerical simulation of temperature field around buried pipes of ground source heat pumps based on mathematical models
  • DOI:
    10.2298/tsci2402441z
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Huiyuan Zhu
  • 通讯作者:
    Huiyuan Zhu
Serum macrophage migration inhibitory factor as a potential biomarker to evaluate therapeutic response in patients with allergic asthma: an exploratory study
血清巨噬细胞迁移抑制因子作为评估过敏性哮喘患者治疗反应的潜在生物标志物:一项探索性研究
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huiyuan Zhu;Shaochun Yan;Jingshuo Wu;Zhong Zhang;Xiaolin Li;Zheng Liu;Xing Ma;Lina Zhou;Lin Zhang;Mingming Feng;Yiwei Geng;Aixin Zhang;S. Janciauskiene;Aiguo Xu
  • 通讯作者:
    Aiguo Xu

Huiyuan Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huiyuan Zhu', 18)}}的其他基金

CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
  • 批准号:
    2317302
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
  • 批准号:
    2332802
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
CAREER: Single-Atom Alloy Nanocrystals for Catalyzing Sustainable Nitrogen Cycling
职业:用于催化可持续氮循环的单原子合金纳米晶体
  • 批准号:
    2143710
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

农民合作社绿色生产行为:形成机制、溢出效应与干预政策
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
草场整合的合作社路径:嵌套型产权的视角
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
制度复杂性视角下的农民合作社商业模式创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
  • 批准号:
    72103054
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
农民合作社参与对乡村治理绩效的影响机理及效果研究
  • 批准号:
    72163030
  • 批准年份:
    2021
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

PUFA metabolism for prevention and treatment of TMD pain: an interdisciplinary, translational approach.
PUFA 代谢预防和治疗 TMD 疼痛:一种跨学科的转化方法。
  • 批准号:
    10820840
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
RhoFED T-SCCC
RhoFED T-SCCC
  • 批准号:
    10745900
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
Development, review, and conduct of Children's Oncology Group (COG) Clinical Trials
儿童肿瘤学组 (COG) 临床试验的开发、审查和实施
  • 批准号:
    10567992
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
SUPPORT SERVICES FOR THE PREVENTION AND TREATMENT THROUGH A COMPREHENSIVE CARE CONTINUUM FOR HIV-AFFECTED ADOLESCENTS IN RESOURCE CONSTRAINED SETTINGS IMPLEMENTATION SCIENCE NETWORK
通过全面护理连续体为资源有限环境中受艾滋病毒影响的青少年提供预防和治疗支持服务 实施科学网络
  • 批准号:
    10917617
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了